NEWS RELEASE

SEAL Therapeutics appoints international Advisory Board

Basel, Switzerland, November 3, 2022 – SEAL Therapeutics appoints Carsten Bönnemann (USA), Anne Connolly (USA), Sweta Girgenrath (USA), Andrea Klein (Switzerland), Francesco Muntoni (UK), and Peter Yurchenco (USA) for its Advisory Board.

"We are honored welcoming our Advisory Board members who will support us in advancing our linker protein-based SEAL technology approach as potential treatment for patients with laminin alpha2–related muscular dystrophy (LAMA2 MD). The members are key experts for the clinical development of new treatments for neuromuscular diseases and scientist who have strong expertise in preclinical research”, says Prof. Markus Rüegg, Co-Founder and CEO of SEAL Therapeutics.

For more information about the Advisory Board, please visit www.sealtherapeutics.com

About LAMA2 MD (Merosin-deficient congenital muscular dystrophy or MDC1A)

Congenital muscular dystrophies (CMDs) are a group of genetic muscle diseases with onset at birth or very early infancy, which cannot be treated. The more than 30 known forms of these neuromuscular diseases differ in the type of genetic defect and in the severity of disease progression. The muscles of the affected children progressively lose strength and degenerate over time. Progressive muscle weakness, joint contractures and respiratory insufficiency characterize most CMDs and patients often die before they reach adulthood.

Laminins are proteins of the extracellular matrix that are important in many tissues for the development, stability and survival of interacting cells. LAMA2-related muscular dystrophy (LAMA2 MD, also called MDC1A), is one of the most common forms of CMD. It is caused by mutations in the LAMA2 gene encoding the α2 subunit of laminin-211, a protein that stabilizes muscle fibers. Children affected by LAMA2 MD usually suffer from poor muscle tone and strength already at birth, and are therefore called “floppy infants”. Most of the affected children never learn to walk independently. The respiratory muscles are also weak and continue to degenerate, resulting in organ failure.

About the Simultaneous Expression of Artificial Linkers (SEAL) technology

The innovative gene therapy approach (called SEAL technology), developed by Prof. Markus Rüegg and Prof. Peter Yurchenco and their teams over the past 20 years, overcomes the lack of laminin-α2 in muscle tissue by providing molecular connections with other laminins and with the plasma...
membrane of the muscle fibers. Available data demonstrate that the simultaneous expression of two specifically designed linker proteins functionally corrects the primary pathology of laminin-α2 deficiency, leads to sustained improvement in muscle histology, increased muscle mass and strength, improved body weight, and results in a remarkable increase in life span compared to untreated animals [1-10].

About SEAL Therapeutics AG
SEAL Therapeutics AG, a spin-off of the Biozentrum of University of Basel, develops proprietary SEAL technology as potential gene therapy treatment of LAMA2-related muscular dystrophy (LAMA2 MD; also called MDC1A). The Company combines technology from the Biozentrum, University of Basel and Rutgers, The State University of New Jersey. SEAL Therapeutics intends to team-up with and support a qualified pharma partner with experience in advanced gene therapy technologies for clinical development and registration with the ultimate goal to make this innovative treatment approach available to LAMA2 MD patients and their families.

References


Contact
Prof. Markus A. Rüegg, CEO
markus-a.ruegg@unibas.ch
contact@sealtherapeutics.com
www.sealtherapeutics.com
Twitter: @SEAL_Tx
Linkedin: SEAL-Therapeutics-AG

###