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Fitting Thermal and Chemical Denaturation Data

Here we derive a general equation for fitting sigmoidal two-state denaturation

curves to a Boltzmann distribution and then modify that expression to included

specific parameters for the fitting of thermal and chemical denaturation data.

Consider a two-state denaturation equilibrium, where only the native (N) and

denatured (D) states of a protein are significantly populated:

N ⇀↽ D

The equilibrium constant for this reaction is defined as:

Keq =
[D]

[N ]
(1)

A standard thermodynamic identity shows that the free energy under standard

conditions may be calculated from the equilibrium constant according to Equa-

tion 2, which may be rearranged to give Equation 3. Note that, for convenience,

the prime indicating standard conditions is dropped from ∆G and replaced by a

subscript D−N to indicate that the standard free energy is that for unfolding.

∆G◦ = −RT.lnKeq (2)

Keq = exp

(
−∆GD−N

RT

)
(3)

Unfolding is studied by introduction of a perturbant (e.g. a temperature change,

a pH change or an increasing concentration of denaturant) which incrementally

decreases the stability of the native state, or increases the stability of the de-

natured state. Any observed spectroscopic signal that changes upon increasing

perturbation may be expressed as a sum of contributions from the native and

denatured states. For a given degree of perturbation, the observed signal is

given by Equation 4, where fX is the fractional occupation of state X and sX

is the signal from state X when fX = 1:

Observed Signal = fN.sN + fD.sD (4)

Expressing fD in terms of concentration of D and N (square brackets omit-

ted for clarity), rearranging, and substituting according to Equation 1 gives

Equation 5 for fD:

fD =
D

D +N
⇒ fD =

D
N

D
N + N

N

⇒ fD =
Keq

Keq + 1
(5)
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A similar process gives Equation 6 for fN

fN =
1

Keq + 1
(6)

Substituting Equations 5 and 6 into Equation 4 gives:

Observed Signal =
sN + sD.Keq

1 +Keq
(7)

Expressing Keq according to Equation 3 gives:

Observed Signal =
sN + sD.e−( ∆G

RT )

1 + e−( ∆G
RT )

(8)

In practice, the native and denatured states tend to have sloping baselines since

there are intrinsic signal changes for native and denatured states upon increasing

perturbation. Expressing Equation 8 with terms for sloping baselines gives

(Santoro and Bolen 1988; Clarke and Fersht 1993):

Observed Signal =
(αN + βN .P ) + (αD + βD.P ).e−( ∆G

RT )

1 + e−( ∆G
RT )

(9)

Where P is the degree of perturbation, αX is the signal from stateX when P = 0

and βX is the rate of change of the signal from state X with increasing P . For

example, in thermal denaturation the perturbation is achieved by increasing

temperature so the fitting equation becomes:

Observed Signal =
(αN + βN .T ) + (αD + βD.T ).e−( ∆G

RT )

1 + e−( ∆G
RT )

(10)

Where αN is the native state signal at 0 K, βN is the slope of the native

state baseline, αD is the denatured state signal at 0 K, βD is the slope of the

denatured state baseline, T is the temperature in Kelvin (Centigrade + 273.15),

R is the ideal gas constant (1.987cal.mol−1.K−1) and ∆GD−N is the free energy

of unfolding.

To fit thermal denaturations, ∆GD−N in Equation 10 can be substituted by the

Equation 11, a rearrangement of the Gibbs Helmholtz relationship (Jackson and

Fersht 1991; Nicholson and Scholtz 1996). This formalism expresses ∆GD−N

in terms of temperature, midpoint of the thermal denaturation Tm (which may

be accurately determined from the data), the enthalpy of denaturation at the

transition midpoint ∆Hm, and the change of heat capacity of denaturation ∆Cp.

∆GD−N = ∆Hm

(
1− T

Tm

)
+ ∆Cp

[
T − Tm −

(
T.ln

T

Tm

)]
(11)
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∆Cp can be experimentally determined by calorimetry, or by measuring denat-

uration curves at multiple pH or concentrations of denaturant where the Tm

shows some variation. The variation of ∆Hm in such experiments is dominated

by the effect of ∆Cp, which causes ∆Hm to change with the change in Tm

(∆Cp = δ∆H
δT ).

∆Cp can also be estimated from empirical correlations based on protein size.

In the absence of an experimental value or estimate for ∆Cp, using a value

of zero will yield an acceptable fit and essentially correct parameters for most

thermal denaturation data. This is because Equation 11 has a parabolic form

with non-zero ∆Cp, but that function is closely approximated by a linear form

(∆Cp set to zero) at temperatures close to Tm, where most of the experimentally

observable change in the population of N and D states occurs.

To fit chemical denaturation curves ∆GD−N in Equation 9 was substituted by

Equation 12 (Fersht 1998):

∆GD−N = m ([Denaturant]50% − [Denaturant]) (12)

Where [Denaturant]50% is the concentration of denaturant at the midpoint of

the unfolding transition (50 % population of the unfolded state) and m is the

slope of the transition: m = δ∆GD−N

δ[denaturant] . In addition, the two baseline slopes

in equation 9, βXP were replaced by βX [Denaturant]
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