Tips and Pitfalls in Microscopy

ALEXIA FERRAND
IMAGING CORE FACILITY
BIOZENTRUM
BASEL
Why use a microscope?

- **Super-resolution**
- **Light microscopy**
- **Electron microscopy**

- **Naked eye**

- small molecule: 1 nm
- protein: 10 nm
- virus: 100 nm
- mitochondrion: 1 μm
- bacterium: 10 μm
- mammalian cell: 100 μm
- hair: 1 mm
- ant: 1 mm
Why use a microscope?

Magnification

- Retina
- Simple magnifying lens
- Subject
- Virtual image

- Retina
- Lens of eye
- Eyepiece
- Image formed by objective
- Tube lens
- Objective
- Specimen
- Condenser
- Virtual image
Why use a microscope?

Resolution
Why use a microscope?

Resolution: Smallest distance between 2 point sources such that their diffraction patterns show a detectable drop in intensity between them.
Why use a microscope?

Magnification versus Resolution:

Magnification can be meaningless if the necessary resolution is lacking.
Basic optics...

Images are not identical to the object

Image = Object x Point Spread Function
Basic optics...

- **Point Spread Function:** Describes the response of an imaging system to a point source or point object.
Basic optics...

- The Airy Disk*: Caused by diffraction on objective aperture
- Negative impact on resolution

\[\text{resolution} = 0.61 \times \frac{\lambda}{n \sin \alpha} \]

Where: \(n \sin \alpha = NA \)
\(n = \text{RI of medium} \)
\(\alpha = 1/2 \text{objective collection angle} \)
\(\lambda = \text{wavelength of light (Emission)} \)

*after GB Airy, British astronomer, 1834
Basic optics...

- **Point Spread Function**: A good PSF of an object (bead) should have an “hourglass” shape.
Basic optics...

- Point Spread Function: A good PSF of an object (bead) should have an “hourglass” shape.

To improve your images

There are tips to follow!
Outline

- Image Acquisition for fixed samples
- Image Acquisition for live imaging
- Image Processing
Image Acquisition for fixed samples

The brighter, the better!*

*Except when it saturates...
SAMPLE Fixation

- «Standard» Fixation: PFA
- Alternative: 100% MeOH
- Methanol works nicely for microtubules and centrosomes
- For fluorescent proteins, DON’T USE MeOH!
- Also poor results with phalloidin when using MeOH
Immuno-Staining

• Blocking step with BSA or serum
• Primary Ab
 • 30 min-1h (cells)
 • 1h – days (tissues sections/organs)
• Secondary Ab
 • 30 min-1h
• Washing steps
 • Many short ones better than couple long ones

• Store in the dark at 4°C or -20°C depending on your mounting media.
Careful experiment planning

- Do proper controls
 - Single labelled controls with each fluorochrome to check all channels (Pos/Neg)

- When > 1 color, cross-talk and bleedthrough can happen
 - Make sure that Excitation and Emission spectra are well separated.
 - Use sequential scan if needed
 - Check the filter sets before choosing your fluorophores
Careful experiment planning

https://www.biozentrum.unibas.ch/imcf/links-downloads
Careful experiment planning

Antibodies, fluorescence dyes, fluorescent proteins, filters:

- **BenchSci** - A.I. Driven Antibody Search
- Fluorescence spectra viewers:
 - FPbase - a database of fluorescent proteins.
 - SearchLight (Semrock)
 - Fluorescence SpectraViewer - Plot and compare spectra and check the spectral compatibility for many fluorophores.
 - Table of Fluorochromes @ Iowa State University - check for excitation and emission maxima of most of the current fluorochromes.
- **Fluorescent Biosensor Database** - Repository of genetically encodable fluorescent biosensors.

Biology resources:

- **The Human Protein Atlas** - Database of proteins’ distribution in cells, tissues and organs.
- **Allen Brain Map** - Brain atlases and advanced tools for neurobiologists.
- **Image Data Resource (IDR)** - Public repository of image datasets from published scientific studies.
- **BioNumbers** - Search tool for molecular biology associated numbers
Multi-labeling

SIMULTANEOUS
Faster

SEQUENTIAL
Less bleedthrough

Blue then Green then Red
Sample Preparation

The sample is part of the optics
The last 500 um are important
1 – coverglass

MOST COMMON SIZE
0.17 mm = N°1.5
Sample Preparation

The sample is part of the optics

The last 500 um are important

1 – coverglass (spherical aberrations)

http://www.olympusmicro.com
Sample Preparation

The sample is part of the optics
The last 500 um are important
1 – coverglass (spherical aberrations)

Grow cells directly on the coverglass
//
Mount your specimen on the coverglass
Sample Preparation

The sample is part of the optics
The last 500 um are important
2 – mounting media (avoid bubbles)

<table>
<thead>
<tr>
<th>Mounting Media</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permount (Biomeda)</td>
<td>1.54</td>
</tr>
<tr>
<td>glas</td>
<td>1.52</td>
</tr>
<tr>
<td>immersion oil</td>
<td>1.52</td>
</tr>
<tr>
<td>Canada balsam</td>
<td>1.52</td>
</tr>
<tr>
<td>DPX (Fluka)</td>
<td>1.52</td>
</tr>
<tr>
<td>Fluorescence Mounting Medium (DAKO)</td>
<td>1.47 – 1.50</td>
</tr>
<tr>
<td>Mowiol (Calbiochem)</td>
<td>1.49</td>
</tr>
<tr>
<td>ProLong Gold (Molecular Probes)</td>
<td>1.47 – 1.41 (increases over time)</td>
</tr>
<tr>
<td>Kaisers glycerol jelly</td>
<td>1.47</td>
</tr>
<tr>
<td>Vectashield (Vector Labs)</td>
<td>1.46</td>
</tr>
<tr>
<td>Vectashield / glycerol + 2% DABCO</td>
<td>1.46</td>
</tr>
<tr>
<td>glycerol / water in different ratios</td>
<td>1.47 – 1.33</td>
</tr>
<tr>
<td>glycerol 100%</td>
<td>1.47</td>
</tr>
<tr>
<td>glycerol 90% (w/w)</td>
<td>1.46</td>
</tr>
<tr>
<td>glycerol 80% (w/w)</td>
<td>1.45</td>
</tr>
<tr>
<td>Aquatex (Merck)</td>
<td>1.40</td>
</tr>
<tr>
<td>albumin/water</td>
<td>1.42 – 1.33</td>
</tr>
<tr>
<td>Fluoromount-G (Southern Biotech Assoc.)</td>
<td>1.39</td>
</tr>
<tr>
<td>Gelmount (Biomeda)</td>
<td>1.36</td>
</tr>
<tr>
<td>water</td>
<td>1.33</td>
</tr>
<tr>
<td>air</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Source: Leica

THERE IS NO «one fits all» MOUNTING MEDIA
Preserve 3D information

Some mounting media can flatten the sample

- 50% PBS-Glycerol
- Prolong Diamond
- Euparal
- Vectashield
- Prolong Gold
- Fluoromount G

- DAPI
- aTubulin
- Phalloidin
Which mounting media?
Sample Preparation

The sample is part of the optics

The last 500 um are important

3 – matching the refractive indexes (spherical aberrations)

U Plan-Apo 100X / 1.35 NA objective

Microtubules, centrosomes and DNA are stained. Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. AJ North, JCB, 2006
Sample Preparation

The sample is part of the optics

The last 500 um are important

3 – matching the refractive indexes (spherical aberrations)

U Plan-Apo 100X / 1.35 NA objective
Microtubules, centrosomes and DNA are stained. Seeing is believing? A beginners’ guide to practical pitfalls in image acquisition. AJ North, JCB, 2006
Sample Preparation

The sample is part of the optics

The last 500 um are important

4 – Schmutz effect
What information can you get from the objective lens?

- Mounting threads
- Manufacturer
- Aberration corrections
- Immersion medium
- Numerical aperture
- Working distance
- Color code
- Finger grip
- Front lens
- Flat field correction
- Magnification
- Special properties
- Tube lens
- Cover glass thickness
Choice of the lens

What influences the resolution?

C. elegans larvae taken on a Zeiss Elyra 7 Lattice SIM (P. Ray and A. Ferrand)
Choice of the lens

What influences the resolution?

- **NA of the objective (Light gathering ability)**
 - The higher the NA, the better the details,
Choice of the lens

What influences the resolution?

- **NA of the objective (Light gathering ability)**
 - The higher the NA, the better the details,
 - And the **higher the intensity**
Choice of the lens

What influences the resolution?

- **NA of the objective (Light gathering ability)**
 - The higher the NA, the better the details,
 - And the higher the intensity
 - A high NA reduces the working distance
A refractiveindex mismatch gives rise to geometrical aberrations.

Choice of the lens

What influences the resolution?

- Good refractive index match
Choice of the lens

What influences the resolution?
- Pixel size
Question

What objective will have the best resolution?

- 60X, 1.42 NA, zoom 1.6
- 60X, 1.4 NA, zoom 1.6
- 100X, 1.4 NA, zoom 1

Drosophila brain with Neurotactin in red and GFP-tubulin clone in green. Sample N. Riebli, Image W. Büttner taken on our LSM 700 inverted confocal.
Fluorescence

The brighter the better, BUT NO SATURATION

• Otherwise, no quantification will be possible
• Check your histogram

Histogram Basic Tutorial

http://www.digitaldarrell.com/article-understandingyourdigitalcamerashistogram.asp
Fluorescence

The brighter the better, **BUT NO SATURATION**

- Otherwise, no quantification will be possible
- Use the visual help from the acquisition software

Detector saturation

If PMT gains, laser powers, lamp intensities or camera exposure times are set too high the detector can saturate causing a loss of structural information within bright structures. It is best to have no saturated (red) pixels.
Optimizing images

- Choose bright dyes
- Image through a clean N° 1.5 coverslip
- Mount specimen as close to the coverslip as possible
- Use high NA clean objective with the lowest magnification
- Use glycerol-based medium containing anti-bleaching
- Remove DIC Wollaston prism and analyzer from light path

Increase signal

Adapted from Accuracy and precision in quantitative fluorescence microscopy. JC Waters, JCB, 2009
Optimizing images

Increase signal
- Choose bright dyes
- Image through a clean N° 1.5 coverslip
- Mount specimen as close to the coverslip as possible
- Use high NA clean objective with the lowest magnification
- Use glycerol-based medium containing anti-bleaching
- Remove DIC Wollaston prism and analyzer from light path

Decrease background
- Clean coverslip and optics
- Perfect fluorophore labeling protocol to minimize nonspecific labeling
- Turn off the room lights

Adapted from Accuracy and precision in quantitative fluorescence microscopy. JC Waters, JCB, 2009
Image Acquisition for live imaging

Think viability and photostability more than nice picture!
Careful experiment planning

- The previous rules apply
 - Controls
 - Fluorescent proteins matching the microscope configuration
 - No crosstalk/Bleedthrough
 - Sample preparation in appropriate dishes (#1.5 thickness)
 - Choice of the objective

- Extra Challenges
 - Bleaching
 - Phototoxicity
 - Autofluorescence (biological material, material and/or media) influencing the SBR
 - Controlled environment (Temperature, Humidity, pH, CO2)
HeLa GFP-CENP-A cell line
Overnight movie using a widefield DeltaVision Core 12 bit camera (0-4095 gsl)
Neutral Density 32%
Exposure time 25 ms
Normal mitosis timing under those conditions.
Min (noise) 70
Max (signal) 320

Signal/noise = 4.5
Min (noise) 70
Max (signal) 320

Signal/noise = 4.5

LIVE IMAGING:
TARGET 1:3-1:5 ratio
Keep your cells alive

- And also, keep your cells in focus: do not hesitate to contact us to show you the autofocus options
Prospects & Overviews

Phototoxicity in live fluorescence microscopy, and how to avoid it

Jaroslav Icha (1)†, Michael Weber (2)*,†, Jennifer C. Waters (2) and Caren Norden (1)*

Bioassays 2017
Optimizing live imaging

- Choose bright fluorophores
- Image through a clean N° 1.5 glass bottom dish/ibiTreat
- Mount specimen as close to the coverslip as possible
- Use high NA objective with the lowest magnification
- Remove DIC prism and analyzer from light path
- Minimize exposure of specimen to fluorescence excitation light prior to image acquisition
- It is often necessary to sacrifice SNR to maintain cells alive
- Consider binning to increase SNR

Clean coverslip and optics
Use media without phenol red for imaging (i.e. DMEM GFP, Evrogen)

Turn off the room lights

Adapted from Accuracy and precision in quantitative fluorescence microscopy. JC Waters, JCB, 2009
Optimizing live imaging

Increase signal

- Choose bright fluorophores
- Image through a clean N° 1.5 glass bottom dish/ibiTreat
- Mount specimen as close to the coverslip as possible
- Use high NA objective with the lowest magnification
- Remove DIC prism and analyzer from light path
- Minimize exposure of specimen to fluorescence excitation light prior to image acquisition
- It is often necessary to sacrifice SNR to maintain cells alive
- Consider binning to increase SNR

Decrease background

- Clean coverslip and optics
- Use media without phenol red for imaging (i.e. DMEM GFP, Evrogen)
- Turn off the room lights

Adapted from Accuracy and precision in quantitative fluorescence microscopy. JC Waters, JCB, 2009
Image Analysis and Processing

In focus Simple Gaussian blur
Tips for your analysis

- Always keep the original data.
- When converting image data from a proprietary format, save your image data as TIFF (tagged image file format) or ome.tiff (lossless compression).
- Simple adjustments to the entire image or cropping are usually acceptable.
- Acquire your images under identical conditions, and any post-acquisition image processing should also be identical.

For more details, please read: Digital Images Are Data: And Should Be Treated as Such, by Douglas W. Cromey
Tips for your analysis

- Always keep the original data.
- When converting image data from a proprietary format, save your image data as TIFF (tagged image file format) or ome.tiff (lossless compression).
- Simple adjustments to the entire image or cropping are usually acceptable.
- Acquire your images under identical conditions, and any post-acquisition image processing should also be identical.
- Be careful when you change your image size, especially in Photoshop.

For more details, please read: Digital Images Are Data: And Should Be Treated as Such, by Douglas W. Cromeay
Tips for your analysis

- Always keep the original data.
- When converting image data from a proprietary format, save your image data as TIFF (tagged image file format) or ome.tiff (lossless compression).
- Simple adjustments to the entire image or cropping are usually acceptable.
- Acquire your images under identical conditions, and any post-acquisition image processing should also be identical.
- Be careful when you change your image size, especially in Photoshop.
- Use of software filters to improve image quality is usually not recommended for biological images.
- Cloning or copying objects into a digital image, from other parts of the same image or from a different image, is very questionable.

For more details, please read: Digital Images Are Data: And Should Be Treated as Such, by Douglas W. Cromey
What to add in your M&Ms

- Manufacturer and type of microscope (eg. Zeiss LSM880 confocal mounted on an Axio Observer microscope stand)
- Objective used (eg. 63x 1.4 NA oil Plan-Apochromat)
- Illumination light source, wavelengths of excitation and emission (eg. 488 nm line of Argon laser with a longpass 500nm filter)
- Camera manufacturer and model (eg. Prime 95B, Photometrics)
- Software for acquisition (eg. LASAF 2.6) and image acquisition settings (eg. ND, exposure time, binning, interval in t and z)
- Details of any image processing or analysis routine– raw images may also be required
Quantitative imaging

- Avoid Bias – the difference needs to be statistically relevant
- Illumination of the field of view needs to be homogenous
- Avoid focus drift in a timelapse
- Be careful of laser power/illumination fluctuation
- Avoid Photobleaching
- Be careful with mounting your samples
- In a full set of experiments, make sure that there are no software updates
- Stats: Nature has a collection of short articles called ‘Statistics for Biologists’ (https://www.nature.com/collections/qghhqm)
Tutorial: guidance for quantitative confocal microscopy

James Jonkman, Claire M. Brown, Graham D. Wright, Kurt I. Anderson and Alison J. North
Take-home message

- The sample is part of the optics – avoid sample-induced aberrations
- Try to increase signal and decrease background
- Do not overexpose your images
- For live images, adjust exposure time, laser power (confocal), and neutral density (widefield/spinning disk) to keep your cell happier (alive and functional) for longer

- Always keep your raw data and work on copies
- Be ethical with your images!
Thank you!

Alexia Ferrand
Imaging Core Facility
Biozentrum
University of Basel
alexia.ferrand@unibas.ch
www.biozentrum.unibas.ch/imcf

This lecture found some inspiration from the work of others:
Dr C. Janz (Ibidi), Dr L. Gelman (FMI Basel)
B. Fleming (Roslin Institute Edinburgh)
Jonkman et al., Nature Protocols 2020