BIOZENTRUM ANNUAL REPORT 2014
Table of content

Research at a glance

Focal Areas
Computational & Systems Biology
Growth & Development
Infection Biology
Neurobiology
Structural Biology & Biophysics

Research Groups
Prof. Markus Affolter
Prof. Silvia Arber
Prof. Marek Basler
Prof. Attila Becskei
Prof. Petr Broz
Prof. Dirk Bumann
Prof. Clemens Cabernard
Prof. Christoph Dehio
Prof. Fiona Doetsch
Prof. Stephan Grzesiek
Prof. Michael N. Hall
Prof. Christoph Handschin
Prof. Sebastian Hiller
Prof. Sonja Hofer
Prof. Urs Jenal
Prof. Roderick Lim
Prof. Timm Maier
Prof. Thomas Mrsic-Flogel
Prof. Erich Nigg
Prof. Jean Pieters
Prof. Heinrich Reichert
Prof. Markus Ruegg
Prof. Peter Scheiffele
Prof. Timm Schirmer
Prof. Torsten Schwede
Prof. Anne Spang
Prof. Martin Spiess
Prof. Henning Stahlberg
Prof. Kelly Tan
Prof. Erik van Nimwegen
Prof. Mihaela Zavolan

Core Facilities
Biophysics Core Facility
FACS Core Facility
Imaging Core Facility (IMCF)
Proteomics Core Facility (PCF)
Research IT

Associated University Facilities
C-CINA
Center for scientific Computing (sciCORE)
Life Sciences Training Facility
Microscopy Center
Quantitative Genomics Facility

Management, Administration & Services
Research at the Biozentrum embraces a wide range of topics, however one main focus all the research groups share is a strong interest to understand the molecular organization of living organisms. The major areas of research are concerned with the structure and function of macromolecules, the wiring of regulatory circuits, and the general principles underlying complex biological systems and their dynamic interactions.

Currently, the research groups of the Biozentrum are grouped into five major areas of investigation: Growth & Development, Infection Biology, Neurobiology, Structural Biology & Biophysics and Computational & Systems Biology. These research areas are not strictly separated from each but rather share concepts and technologies. Furthermore, new and relevant questions often arise at the overlap between the research areas, while innovative solutions can be found arising from the expertise of each respective area.

Modern research increasingly depends on sophisticated technologies, notably in the fields of genomics, proteomics, imaging, and data analysis. To meet this challenge, the Biozentrum has established a number of so-called Technology Platforms focusing on recent developments, for example, in the fields of electron microscopy and light microscopy, proteomics, FACS (Fluorescence Activated Cell Sorting) and Research IT. The Biozentrum shares further Technology Platforms (microarray technology, next-generation sequencing, etc.) with other regional research institutes.
The advent of quantitative high-throughput methods in genomics, transcriptomics, proteomics, and imaging has led to a growing need for automated analysis of large volumes of data. As a growing number of molecular cell components continue to be characterized, increasing numbers of scientists are beginning to analyze how much of the behavior of biological systems is determined by the complex dynamic interactions between these molecular components. Such developments are paralleled by an increasing demand on mathematical models and computational approaches.

The research groups involved in Computational & Systems Biology are addressing a wide range of subjects including the computer simulation of the dynamical behavior of proteins at the molecular level, methods for the inference of structure and function of proteins, to the analysis of gene regulatory networks and genome evolution. Many of these projects are undertaken in collaboration with other research groups at the Biozentrum and often also with large international consortia.

Some of the groups have access to a wet laboratory in which experiments are carried out. All group leaders from Computational & Systems Biology are also involved as research group leaders at the Swiss Institute of Bioinformatics (SIB) and support, in collaboration with the SIB, a competitive IT infrastructure that incorporates application-, database-, and web servers, large scale storage and backup facilities.
The spatial and temporal regulation of interactions between molecules is fundamental to life. Growth & Development is dedicated to understanding how these coordinated interactions lead to cell growth, cell division and the development of living organisms.

Life is more complicated than a binary interaction of two factors and its regulation; various processes need to occur in parallel for a cell to function normally. For this reason, this research area covers a broad range of aspects from signal transduction, gene regulatory networks, cell division and cell cycle control to membrane transport, protein and mRNA transport, in a variety of experimental organisms such as bacteria, yeasts, worms, flies, fish and mammals.

This broad spectrum of experimental systems and regulatory processes makes it possible to investigate the basis of organ development, cancer and muscle function. In these endeavors, collaborative arrangements with other groups at the Biozentrum, in particular those from the research areas Structural Biology & Biophysics and Computational & Systems Biology are sought. The research groups involved in Growth & Development are also involved in initiatives within the University and beyond, such as the Basel Stem Cell Network, the Basel Signaling Alliance and SystemsX.ch.
The main objective of Infection Biology is to understand infectious diseases at both a cellular and molecular level in order to better control them in the future. The research groups at the Biozentrum involved in this field complement each other with their specialized skills and interests. The diversity of approaches to a common theme – the host-microbe interaction – generates a synergistic effect based on an intense exchange of scientific and technological expertise and experience.

The major research focus is on bacterial infections, in which currently nine pathogens are being studied. These represent archetypes for a range of virulence mechanisms such as intracellular replication, immune evasion, the injection of bacterial effectors into host cells, biofilm formation and persistence. The impact of this research goes beyond the field of microbial pathogenesis, addressing also basic principles in cell and molecular biology including pro-inflammatory signaling, intracellular traffic, regulation in bacteria, nanomachines, and in vivo microbial metabolism.

Several groups within Infection Biology have introduced systems biology as a new approach to investigate host-pathogen interactions and collaborate closely with their colleagues from other research areas, in particular from Structural Biology & Biophysics and Computational & Systems Biology.
One of the major challenges in biology is to understand how the nervous system forms, enabling it to appropriately respond to a broad spectrum of stimuli and to have control over complex functions, such as behavior and emotions. The nervous system must be capable of storing information, integrating it into the already existing memory and be able to retrieve it again.

The mechanisms employed are still poorly understood. The way in which neurons are generated and form meaningful functional circuits is not only of interest to developmental neurobiologists but also of great significance in regard to diseases, such as Alzheimer’s disease and epilepsy, injuries to the nervous system or disturbances in body weight regulation.

The various research groups belonging to Neurobiology are concerned with neurogenesis and cell specification, the use of stem cell-based models of neural function and dysfunction, the assembly and elimination of neurons and synapses, synaptic signaling and the function of neuronal circuits.

Currently, an area of focus in this field of research is neuromuscular disorders, obesity and autism spectrum disorders – all areas involving important translational aspects, which are being further investigated in cooperation with industry. From a scientific point of view, these activities are being supported and further promoted by the Neuroscience Network Basel (NNB), a network bringing together scientists from the Biozentrum and affiliated institutions as well as partners in industry.
The understanding of biological functions depends ultimately on an accurate account of biomolecular interactions in regard to structure, physical forces and their resulting dynamics. Enormous technical advances have been made in visualizing the threedimensional structures and in quantifying the dynamics of cellular components down to the atomic level. The research groups working in Structural Biology & Biophysics aim to apply and further develop these structural and biophysical techniques.

The structural techniques range from light microscopy, electron and scanning microscopy to X-ray crystallography and NMR spectroscopy. Biophysical methods encompass many different time-resolved spectroscopic techniques such as laser-flash spectroscopy and FRET, thermodynamic analytical methods such as ITC and DSC microcalorimetry, NMR imaging and \textit{in vivo} spectroscopy. The use of rigorous combinations of these techniques enables the structure of biological matter to be determined at all magnifications; from details at the atomic level to entire cells up to small organisms.

In this way, dynamic changes can also be analyzed and quantified over a period of picoseconds or very long periods of time and the energetics and thermodynamics of biomolecular interactions can be investigated with very high precision. There is close teamwork between this branch of research and other areas of science at the Biozentrum, since many of the investigations involve projects which are carried out together with other research groups with a biochemical or biological orientation.
RESEARCH GROUP MARKUS AFFOLTER
Cell signalling and cell rearrangement during organ morphogenesis

The organization of body pattern in developing multi-cellular organisms is controlled to a large extent by cell-cell signaling. In the past two decades, the molecular components of a relatively small number of diverse developmental signaling cascades conserved throughout evolution have been identified. We have been studying two important developmental signals (Dpp/BMP and Fgf), and our efforts concentrated firstly on characterizing the signaling pathways in detail and deciphering their molecular logic, and secondly on understanding how these pathways control exquisite cellular behavior during development, both in Drosophila and in zebrafish. Our most intense research efforts are directed towards a profound understanding of cell behavior in branching morphogenesis, a process that leads to the ramification of epithelial structures such as seen in the lung, the kidney, many internal glands as well as the vascular system.

Cell signaling in organ formation
It has been proposed more than a century ago that the organization of body pattern might be controlled by so-called morphogen gradients. Only recently has it been possible to demonstrate that secreted proteins of the Transforming Growth Factor β (TGFβ), Wnt and Hedgehog families specify positional information by this mechanism. Drosophila Dpp is a member of the TGFβ superfamily and was the first secreted protein for which a morphogen function has been clearly demonstrated. Over the past ten years we have characterized the Dpp signaling pathway in detail, in collaboration with the group of Konrad Basler in Zurich.

Our studies provide the molecular framework for a mechanism by which the extracellular Dpp morphogen establishes a finely tuned, graded read-out of a transcriptional repressor complex including Smad proteins and the zinc-finger protein Schnurri. Targets of this repressor complex include transcriptional regulators as well as secreted proteins involved in morphogen transport. Other morphogens, which pattern the nervous system or the limb fields in higher vertebrates, might use similar mechanisms. Our current efforts are devoted to a systems biology approach and are done in the framework of the WingX project of the Swiss initiative in Systems Biology. The experiments we concentrate on involve genome-wide target gene identification, real-time analysis of morphogen gradient readout, and computer modelling to better understand the dynamics of the Dpp morphogen system. Just recently, we have identified a novel feedback regulator of the Dpp system which controls the spreading of the Dpp molecule and might be involved in the adaptation of the morphogen gradient to tissue size. Our studies will eventually lead to a comprehensive understanding of morphogen function in tissue growth and patterning, a key issue in modern developmental biology (Fig. 1).

Cell rearrangement in organ formation
To gain insight into how signaling pathways control more complex cellular decisions during the process of organ morphogenesis, we investigate the formation of the Drosophila tracheal system, an epithelial branched network similar to the lung, the kidney or the vasculature. Tracheal development serves as a paradigm to understand how epithelial cell sheets can be transformed by cell signaling and cell-cell or cell-matrix interactions into complex three dimensional networks, a process generally referred to as branching morphogenesis. Our approach has been to identify genes involved in the process by genetic analysis, and the characterization of relevant gene products by in vivo and in vitro analysis. In addition, we have devoted major efforts to characterize branching morphogenesis at the cellular level, using avant-garde, live imaging technology.

Fig. 1: Dpp gradient readout in wing imaginal discs. Wing imaginal discs of different sizes showing Brinker protein expression (red) and pMad distribution (green). Note that the pMad domain increases in size with increasing disc size, and thus scales with tissue size.
Over the past decade, these studies have provided a framework for understanding complex processes involved in the architectural design of developing organs, including the control and integration of cell migration and cell rearrangement via cell-cell signaling and extracellular matrix components (Fig. 2).

Studies on the development of blood vessels in higher organisms suggest strong parallels between tracheal development in insects and tube formation in the growing vasculature (see Fig. 2).

Interested by this possible developmental similarity, we have initiated studies aimed at a better understanding of blood vessel development in zebrafish, one of the most promising animal systems in the study of angiogenesis available at the moment. We have indeed found that our approach to studying cell rearrangement during tracheal development provides a novel insight into how cells behave during angiogenesis when applied to zebrafish. We have recently proposed a novel model for the architecture of the first vessels formed via angiogenesis, a model which is strikingly different to the one previously described. Our studies re-define the cellular routines involved in angiogenesis, and provide the basis for all future studies in the zebrafish regarding angiogenesis. We have now strengthened our efforts to study angiogenesis using live imaging combined with novel transgenic lines and strategies (Fig. 3). Particular emphasis is devoted to the study of blood vessel fusion, a process that has not been studied in the past in vivo at the cellular level.

Fig. 2: Drosophila melanogaster trachea and vertebrate vasculature branching. Branchless (BNL), a fibroblast growth factor (FGF), acts at the top of the hierarchy of cellular events that orchestrate tracheal branching in Drosophila melanogaster (a to c). During vertebrate angiogenesis, vascular endothelial growth factor (VEGF) signalling determines the formation of angiogenic sprouts and controls tip cell and stalk cell identity through Delta Notch signalling. Taken from Affolter et al. (2009) Nat Rev Mol Cell Biol 10, 831-42.

Fig. 3: Blood vessels in the zebrafish embryo. Blood vessels express Green Fluorescent Protein.
Publications 2014

Brauchle, Michael; Hansen, Simon; Caussinus, Emmanuel; Lenard, Anna; Ochoa-Espinosa, Amanda; Scholz, Oliver; Sprecher, Simon G; Plückthun, Andreas; Affolter, Markus (2014). Protein interference applications in cellular and developmental biology using DARPinss that recognize GFP and mCherry. *Biol Open*, 3, 1252-1261.

Santos, ME; Braasch, I; Boileau, N; Meyer, BS; Sauteur, L; Böhne, A; Belting, HG; Affolter, M; Salzburger, W. (2014). The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. *Nat Comm*, 5, 5149.

De Smet, Frederik; Tembuyser, Bieke; Lenard, Anna; Claes, Filip; Zhang, Jie; Michielsen, Christof; Van Schepdael, Ann; Herbert, Jean-Marc; Bono, Françoise; Affolter, Markus; Dewerchin, Mieke; Carmeliet, Peter (2014). Fibroblast Growth Factor Signaling Affects Vascular Outgrowth and is Required for the Maintenance of Blood Vessel Integrity. *Chem Biol*, 21(10), 1310-7.

Hultin, Sara; Zheng, Yujuan; Mojallal, Mahdi; Vertuani, Simona; Gentili, Christian; Ballard, Martial; Milloud, Rachel; Belting, Heinz-Georg; Affolter, Markus; Helker, Christian S M; Adams, Ralf H; Herzog, Wiebke; Uhlen, Per; Majumdar, Arindam; Holmgren, Lars (2014). AmotL2 Links VE-cadherin to Contractile Actin Fibres Necessary for Aortic Lumen Expansion. *Nat Comm*, 5, 3743.

Group Members

Research Associates
- Dr. Heinz Georg Belting
- Dr. Martin Müller

Postdoctoral Fellows
- Dr. Charles Betz
- Dr. Emmanuel Caussinus
- Dr. Alexandru Stefan Denes
- Dr. Oguz Kanca
- Dr. Shinya Matsuda
- Dr. Amanda Ochoa-Espinosa
- Dr. Ilkka Paatero
- Dr. Maria Alessandra Vigano

PhD Students
- Ilaria Alborelli
- Vahap Aydogan
- Dimitri Bieli
- Leonie Enderle
- Stefan Harmanas
- Mario Metzler
- Loïc Sauteur
- Niels Schellinx

Master Students
- Daniel Heutschi
- Etienne Schmelzer

Administrative Assistant
- Helen Preiss

Technical Associate
- Kumuthini Kulendra
Our studies aim at identifying the principles by which neuronal circuits orchestrate accurate and timely control of motor behavior in response to stimuli such as sensory cues or voluntary initiation of movement. To decipher how motor circuits engage in the control of movement, we elucidate the organization and function of neuronal circuits by studying synaptic connectivity, genetic and molecular identities, and functional properties of motor circuits in the mouse.

The motor system is organized in a hierarchy of interleaved circuit modules, with three main overall components contributing to the control of accurate movement. These are circuits in the spinal cord responsible for rhythmicity, computation and perpetuation of motor activity, circuits communicating bi-directionally with supraspinal centers in the brain and brainstem, and sensory feedback circuits informing the nervous system about past action monitored in the periphery. We dissect these circuit elements from various angles to understand how precisely connected neuronal circuits lead ultimately to movement via activation of functionally distinct motor neurons that innervate muscles.

We use multi-faceted approaches combining many technologies. These include state-of-the-art mouse genetics, development and implementation of viral technologies for trans-synaptic circuit tracing and functional manipulation, gene expression profiling of identified neuronal subpopulations, electrophysiology, and quantitative behavioral analysis.

These approaches allow us to assess connectivity and manipulate function to determine the role of defined circuit elements in animal behavior. Furthermore, we are also in a position to uncover mechanisms involved in motor circuit assembly during development, as well as circuit reorganization during learning and responses to disease or injury.

Circuit modules for motor control in the brainstem

Initiation of natural movement depends on the function of descending pathways to the spinal cord. This is strikingly obvious in patients with complete spinal cord injury who are unable to move muscles controlled by spinal segments below the lesion, despite the presence of functional circuits in the spinal cord. Descending motor control pathways are at the core of different forms of movement ranging from repetitive basic locomotor tasks such as walking to sophisticated fine motor tasks like object manipulation. Classical studies provide evidence that the brainstem is involved in the control of a variety of movements, but a deep understanding of the organization and connectivity of identified neuronal subpopulations in the brainstem, how they intersect with executive circuits at the level of the spinal cord, and how they function is currently lacking. We recently investigated the organization of the connectivity matrix between the brainstem and motor neurons in the spinal cord (Esposito et al., 2014).

Upper and lower extremities in four-limbed species exhibit distinct behavioral repertoires in the execution of motor programs. In humans as in mice, forelimbs are far superior to hindlimbs in the performance of fine and skilled motor tasks. Using transsynaptic virus technology and anterograde synaptic tracking, we analyzed comparatively connection profiles between brainstem nuclei and motor neurons. More brainstem nuclei showed direct connections to forelimb-innervating motor neurons than hindlimb connected motor neurons and, thus, a higher degree of direct access to forelimb motor neuron populations. In a more detailed analysis of connection specificity to motor neurons innervating distinct limb muscles, a pattern of specific connections between individual brainstem nuclei and motor neuron subtypes emerged. Together, these findings reveal a highly specific and complex connectivity matrix between different brainstem nuclei and local circuits in the spinal cord, providing insight into the sophisticated interactions carrying motor control commands from the brainstem to the spinal cord (Esposito et al., 2014).
We designed behavioral experiments to address the functional implications of this striking connectivity matrix, focusing on the medullary reticular formation ventral part (MdV), a brainstem nucleus with highly preferential connections to forelimb motor neurons. Within the MdV, excitatory and inhibitory neurons are intermingled and represented approximately equally. However, only excitatory (vGlut2-expressing) neurons make direct connections to forelimb-innervating motor neurons. This finding allowed us to selectively eliminate or silence glutamatergic MdV neurons by specific injection of conditional adeno associated viruses (AAV) into the MdV nucleus of vGlut2Cre mice. This led to the expression of diphtheria toxin receptor (DTR), which can be used to eliminate these neurons by application of diphtheria toxin, or a hybrid glycine-receptor binding to a designer ligand for pharmacogenetic silencing of the corresponding neurons.

Behavioral analysis of these mice revealed that glutamatergic MdV neurons are not needed for the execution of basic locomotor tasks, but are required for high-level performance in skilled motor tasks. In particular, mice with ablated or silenced MdV neurons performed poorly on a single food pellet-reaching task involving forelimbs. Analyzing the different task phases, we found that the grasping phase was affected specifically by non-functional MdV neurons, whereas the initial reaching phase towards the food pellet and the retrieval phase of the pellet to the mouth were unaffected. These findings support a model in which distinct brainstem subpopulations control aspects of motor behavior through specific targeted spinal subcircuits. More generally, they provide important insight into circuit-level mechanisms and anatomical substrates essential for task-specific motor subroutines during the execution of a complex motor program.

A copy circuit from the spinal cord to the brainstem
Movement is the behavioral output of neuronal circuits computing motor commands and performance. The muscular system acts according to instructions conveyed by supraspinal centers via descending pathways to the spinal cord. The CNS uses two circuit level strategies to monitor planned and performed motor actions. First, motor output pathways establish axon collaterals at many levels, providing internal efference copy signals of planned action to recipient neurons. Second, movement-evoked sensory feedback from the body reaches the central nervous system and reports on performed motor actions. These two information streams adjust and modify descending motor commands. Despite their undisputed role in influencing motor behavior, surprisingly little is known about the identity, composition, or synaptic organization of core circuit elements encompassing these pathways, critical information needed to understand their function.

Fig. 2: Synaptic terminals of premotor neurons in the LRN (blue). Axons of a marked spinal interneuron subpopulation terminating in a specific domain of this brainstem nucleus (pink) (see Pivetta et al. 2014 for details).
In a recent study in mice, we revealed the connectivity matrix between neurons in the spinal cord and the brainstem (Pivetta et al., 2014). In particular, we focused our attention on spinal neurons with a bifurcating connection profile to the brainstem nucleus lateral reticular nucleus (LRN). These neurons not only exhibit direct connections to forelimb-innervating motor neurons but also establish ascending collaterals to the LRN. Using virus and mouse genetic tools, we demonstrated that this connection profile occurs frequently within the spinal cord for neurons with direct connections to forelimb-innervating motor neurons. Interestingly, many different functional subtypes of spinal neurons comprise such dual-connection copy-circuit modules. Moreover, we found that axon terminals of functionally distinct spinal neurons terminate in different LRN domains, demonstrating that information converging at the level of motor neuron pools diverges by function at the level of the brainstem.

Together, our findings provide evidence for precise organization of ascending spinal information to the brainstem. This encompasses many functionally distinct spinal subpopulations, which can be distinguished by site of residence in the spinal cord, developmental origin, and neurotransmitter fate. We provide the first insight into the genetic complexity of the spinal efference copy signaling system, lending support to the notion that the reporting of ongoing activity of the spinal cord to supraspinal levels is an important prerequisite for accuracy in motor control.

Motor circuit segregation by function in the spinal cord
Motor behavior can be divided often into functionally opposed phases. An important entry point to understanding differential regulation of motor output has been the comparative analysis of antagonistic motor neuron pool function at the level of the spinal cord. Extensor and flexor motor neuron pools in the spinal cord innervate distinct limb muscles, which are generally active in alternation of an “on-ground” stance and an “off-ground” swing phase during walking. Although functional antagonism is observed in individual neurons in many cases, an overall anatomical assessment of the organizational principles of neuronal circuits relaying information to functionally distinct motor neuron pools was lacking.

In recent work, we used monosynaptically-restricted trans-synaptic viruses to elucidate premotor anatomical substrates for extensor-flexor regulation in mice (Stepien et al., 2010; Tripodi et al., 2011). We observed a medio-lateral spatial segregation between extensor and flexor premotor interneurons in the dorsal spinal cord. These premotor interneuron populations are derived from common progenitor domains but segregate by timing of neurogenesis. Proprioceptive sensory feedback from the periphery was targeted to medial extensor premotor populations and was required for extensor-specific connectivity profiles during development. This provides evidence for a discriminating anatomical basis of antagonistic circuits at the level of premotor interneurons, and points to synaptic input and developmental ontogeny as key factors in the establishment of circuits regulating motor behavioral dichotomy.
Publications 2014

Pecho-Vrieseling, Eline; Rieker, Claus; Fuchs, Sascha; Bleckmann, Dorothee; Esposito, Maria Soledad; Botta, Paolo; Goldstein, Chris; Bernhard, Mario; Galimberti, Ivan; Müller, Matthias; Lüthi, Andreas; Arber, Silvia; Bouwmeester, Tewis; van der Putten, Herman; Di Giorgio, Francesco Paolo (2014). Transneuronal propagation of mutant huntingtin contributes to non-cell autonomous pathology in neurons. *Nature neuroscience, 17*(8), 1064-72.

Pivetta, Chiara; Esposito, Maria Soledad; Sigrist, Markus; Arber, Silvia (2014). Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. *Cell, 156*(3), 537-48.

Secretion systems allow bacteria to transport macromolecules such as proteins into host cells during pathogenesis or bacterial cells during competition in various ecological settings. Type 6 Secretion Systems (T6SS) are encoded by a cluster of 15-20 genes that is present in at least one copy in approximately 25% of all sequenced Gram-negative bacteria. Although linked to virulence during host infection, species such as *Pseudomonas*, *Burkholderia*, *Acinetobacter*, and *Vibrio* can use T6SS to kill competing bacterial cells by delivery of toxic proteins in a cell-cell contact-dependent process.

Several T6SS components are structural homologs of components of a contractile bacteriophage tail and assemble into a large structure that can be studied using whole cell electron cryo tomography and live cell fluorescence microscopy. A combination of these techniques allows to obtain high resolution structure of T6SS in situ and to follow T6SS assembly in time. This provides an unprecedented level of understanding of this dynamic nanomachine (Basler et al., Nature 2012, Basler and Mekalanos, Science 2012). For example, live cell imaging of T6SS activity in *P. aeruginosa* revealed that these cells are able to sense an attack from neighboring heterologous bacteria and assemble its T6SS apparatus with a remarkable precision to specifically kill an attacking cell without damaging bystander cells (Basler et al., Cell 2013).

The goal of our research is to understand the key molecular mechanisms underlying the assembly, substrate delivery, and regulation of T6SS function. We aim to create a detailed model of the T6SS nanomachine that would allow predicting structural changes needed to engineer T6SS with new properties. Novel approaches developed to study T6SS function will be further applied to study other molecular nanomachines as well as mechanisms of various contact dependent bacterial interactions in polymicrobial communities.

High-resolution structure of T6SS

A whole T6S apparatus was recently visualized in *V. cholerae* by whole cell cryo electron tomography. Resolution of the structure is, however, too low to identify individual components and therefore does not provide enough information to infer a mechanism of T6SS assembly. We are solving atomic resolution structures of T6SS components and analyze their mutual interactions by genetic and biochemical methods. We are developing novel strategies to improve resolution of the T6SS structure in situ in various model organisms. We aim to identify differences in T6SS assemblies in these organisms to explain the fundamental differences in their dynamics.
Visualization of T6SS activity
Our recent success in visualizing T6SS assembly and dynamics in live cells significantly improved our understanding of T6SS function in *V. cholerae* and *P. aeruginosa*. We use novel imaging approaches to describe localization of T6SS components with high spatial and temporal resolution. We are interested in understanding the process of initiation of T6SS assembly in various model organisms to further extend our knowledge about T6SS regulation. We are also using imaging to characterize the mode of action of T6SS effectors to better understand T6SS function.

Regulation of T6SS function
We are developing novel genetic methods to describe signaling processes involved in regulation of T6SS function on the transcriptional, translational, and post-translational level. We are also developing approaches to understand the role of T6SS in polymicrobial communities and to unravel the entire repertoire of secreted effectors.

Morphological changes of *V. cholerae* (red) after an attack by *P. aeruginosa* (green). (Basler et al., Cell 2013).

Group Members

Postdoctoral Fellow
Dr. Misha Kudryashev

PhD Students
Maximilian Brackmann
Peter David Ringel

Master Students
Lara Dürr
Di Hu
Sebastian Ursich

Administrative Assistant
Michaela Hanisch

Technical Associate
Dr. Mihai Constantin Ionescu
Cell differentiation can be achieved by specifying cell fate through deterministic instructive signals or by stochastic transitions to various epigenetic states. This form of phenotypic diversity is advantageous for adaptation and survival in changing environments, as well. For example, random variations in surface antigens increase the chance of a microorganism to escape from the immune defense.

The first area of our research has focused on the understanding of epigenetic silencing. This is of paramount importance since cellular differentiation in higher eukaryotic organisms often employs silencing to package genes into the inactive heterochromatin (Fig. 1). The logic behind chromosomal epigenetic processes has been unclear. Our recent work unraveled spatial aspects in control of silencing in yeast cells (Kelemen et al. (2010) PLoS Biology). The corresponding reaction-diffusion model revealed that the same reaction mechanism that describes silencing can support both graded monostable and switch-like bistable gene expression, depending on whether recruited repressor proteins generate a single silencing gradient or two interacting gradients that flank a gene. Our experiments confirmed that chromosomal recruitment of activator and repressor proteins permits a plastic form of control; the stability of gene expression is determined by the spatial distribution of silencing nucleation sites along the chromosome. Our findings in yeast are expected to stimulate further studies to reveal the logic of chromosomal epigenetic regulation in higher eukaryotic organisms and we are starting a research project in this direction.

The second area of our research has focused on the functioning of feedback loops that arise from evolutionary gene duplication (Hsu et al. (2012) Nature Communications). During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates (Fig. 2).
In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit. Since the decay rate of RNAs is fast, measurements of gene expression in the high-frequency domain is necessary. Therefore, we have started measuring stochastic gene expression at the level of single molecule RNAs (Fig. 3).

Fig. 3: Single molecule detection of mRNAs by FISH. GAL3 mRNA (red), ILS1 mRNA (green).

Publications 2014

Bonde, Marie Mi; Voegeli, Sylvia; Baudrimont, Antoine; Séraphin, Bertrand; Becskei, Attila (2014). Quantification of pre-mRNA escape rate and synergy in splicing. *Nucleic acids research*, 1-14.
The aim of our research is to understand how host cells recognize the presence of bacterial pathogens and how they eliminate this threat. We focus on the initial contact between host and pathogen, during which host defense mainly relies on the innate immune system. An important component of innate immunity are the so-called pattern recognition receptors (PRR), which detect pathogen-derived molecules known as pathogen-associated molecular patterns (PAMPs) or host-derived danger signals (DAMPs) in the extracellular or intracellular space of host cells. The best studied of the PRRs are the membrane-associated Toll-like receptors (TLRs) and the cytoplasmic RIG-I-like and NOD-like receptors (RLRs, NLRs). Upon binding of their ligands, these receptors initiate a number of signaling pathways that activate anti-microbial mechanisms and initiate the recruitment of other immune cells by the secretion of inflammatory cytokines and chemokines. Altogether, these responses serve to rapidly eliminate invading pathogens and to restore tissue homeostasis.

The major area of research in the lab is the study of inflammasome complexes. Inflammasomes are multi-protein complexes that are assembled in the cytoplasm by activated PRRs of the NLR and PYHIN protein families in response to inflammatory and noxious stimuli. These complexes serve as activation platforms for inflammatory caspases (caspase-1, -11 and -12 in mice) and are classified into canonical and non-canonical inflammasomes, depending on their composition and their biological effects. Besides their role in infections, unregulated inflammasome activity plays a major role in auto-inflammatory diseases and during sterile inflammation (gout, atherosclerosis, type 2 diabetes).

Assembly and regulation of canonical inflammasomes
Canonical inflammasomes are the best described group of complexes and are assembled by NLRs and PYHIN receptors. In their basic form, they consist of an activated receptor, an adaptor protein called ASC and pro-caspase-1, which gets activated by dimerization and autoproteolysis in the complex. Active caspase-1 directs the processing of certain cytokines (interleukins-1 and -18) and the induction of a specialized form of rapid cell death, called pyroptosis. Several different inflammasomes are known and are named after the receptor that initiates complex formation. These receptors recognize a wide variety of PAMPs and DAMPs, such as flagellin and components of bacterial type 3 secretion systems (NLRC4/NAIP inflammasome), cytoplasmic DNA (AIM2 inflammasome) as well as membrane damage, changes in ion levels and ROS production (NLRP3 inflammasome) (Fig. 1). An essential component of all canonical inflammasomes is the adaptor ASC, which has the ability to rapidly oligomerize into one single, macromolecular complex called the ASC speck. We investigate how these complexes assemble and how inflammasomes direct host immune defenses by combining cell biology, biochemistry and real-time imaging.

Non-canonical inflammasome signaling
Recently a new inflammasome pathway was discovered which resulted in the activation of caspase-11, thus referred to as the non-canonical pathway. This inflammasome is specifically activated during infections with Gram-negative bacteria but not with Gram-positive bacteria. In addition, the non-canonical caspase-11 inflammasome was linked to mortality in models of Gram-negative sepsis, highlighting the importance of this pathway. Consistently, Lipopolysaccharide (LPS) was recognized to be a ligand that results in caspase-11 activation, but other components of this pathway still remain uncharacterized. Here, we are studying host signaling pathways that determine the activation of this pathway during infections with the model pathogen Salmonella typhimurium and we work on characterizing and identifying components of the non-canonical inflammasome.

Links between the interferon-response, cell-autonomous immunity and inflammasomes
Since inflammasomes are important mediators of inflammation, assembly of these complexes is very tightly regulated and often requires previous induction of other signaling pathways. We have recently found that activation of caspase-11 in response to Gram-negative bacterial infections requires the production of type-I-interferons, a class of cytokines that regulates the induction of several thousands of genes involved in various aspects of host defense. In particular, interferons induce a number of genes involved in cell-autonomous immunity, i.e. processes that allow cells to fight and eliminate pathogens on a single cell level. Among the most highly in-
duced are several families of interferon-induced GTPases, which have been shown to be required to control intracellular killing bacterial and protozoan pathogens. How these GTPases attack and kill intracellular bacteria (Fig. 2) and how this is linked to the induction of inflammasome signaling is one of the research interests of our lab.

![Fig. 2: Interferon-induced GTPases (green) attack intracellular Salmonella (mCherry, red). Inset shows Salmonella that have been killed and begin to lose mCherry expression. Scale bars 10 µm.](image)

Publications 2014

Meunier, Etienne; Dick, Mathias S; Dreier, Roland F; Schürmann, Nura; Kenzelmann, Daniela; Warming, Sören; Roose-Girma, Merone; Bumann, Dirk; Kayagaki, Nobuhiko; Takeda, Kiyoshi; Yamamoto, Masahiro; Broz, Petr (2014). Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. *Nature, 509*, 366-370.

O’Donnell, Hope; Pham, Oanh H; Li, Lin-Xi; Atif, Shaikh M; Lee, Seung-Joo; Ravesloot, Marietta M; Stolfi, Jessica L; Nuccio, Sean-Paul; Broz, Petr; Monack, Denise M; Baumler, Andreas J; McSorley, Stephen J (2014). Toll-like Receptor and Inflammasome Signals Converge to Amplify the Innate Bactericidal Capacity of T Helper 1 Cells. *Immunity, 40*(2), 213-24.
Infectious diseases represent a major worldwide threat to human health. Novel strategies to combat infectious disease are urgently needed because of rising resistance of pathogens to antimicrobial therapy, an increasing number of immunosuppressed patients that are highly susceptible to infection, increasing travel which enhances transmission and worldwide spread of novel and re-emerging pathogens, and potential bioterrorism threats.

The substantial progress in infection biology research in the last two decades could provide a basis for novel control strategies. However, it has remained difficult to translate this extensive knowledge into effective new control strategies. One potential reason why it is so difficult to translate basic research to effective strategies for combating infectious diseases, could be the prevailing focus on the action of individual pathogen or host components. While this reductionist approach was highly successful to identify and characterize key virulence and immune factors, it can not explain the course of complex multifactorial infectious diseases involving hundreds of interacting pathogen and host factors. Our goal is therefore to integrate the vast existing knowledge and to develop appropriate methodology to analyze interacting host/pathogen networks using FACS sorting of pathogens from infected host cells and tissues, quantitative proteomics, metabolomics, molecular genetics, animal infection models, and in silico modeling.

For our research we use Salmonella as well as Shigella as model pathogens. Both pathogens cause diarrhea and Salmonella can also cause typhoid fever and nontyphoidal Salmonella (NTS) bacteremia, which together cause over a million deaths each year. In addition to their importance as human pathogens, Salmonella and Shigella are among the best-studied model pathogens.

Fig. 1: Salmonella-infected mouse spleen (yellow, Salmonella; red, neutrophils; blue, red blood cells).
Metabolism

A large number of *Salmonella* proteins with detectable expression during infection have metabolic functions. Many of these enzymes could represent promising targets for antimicrobial chemotherapy. However, we have previously shown that actually only a very small minority of enzymes is sufficiently relevant for *Salmonella* virulence to qualify as a potential target. To understand the differential relevance of metabolic enzymes we systematically characterize the entire *Salmonella* metabolic network during infection by integrating large-scale data on in vivo nutrient availability and enzyme abundance with a genome-scale in silico model that provides a consistent large-scale description of *Salmonella* metabolism during infection. The results revealed a surprisingly large diversity of host nutrients. However each of these nutrients was available in only minute amounts. This paradoxical situation (“starving in paradise”) has two major consequences, i) broad nutrient supplementation buffers many *Salmonella* metabolic defects thus limiting opportunities for antimicrobials, ii) *Salmonella* growth in infected mice is rather slow and nutrient-limited. Both findings reiterate the major importance of metabolism for infectious disease outcome.

Within the framework of the SystemsX.ch RTD project BattleX (coordinator: Dirk Bumann) we have recently started to analyze pathogen and host metabolism in *Shigella* infections together with five collaborating groups across Switzerland. Initial results suggest that *Shigella* (like *Salmonella*) has access to diverse host nutrients. However, in this case excess nutrient quantities that support very fast pathogen growth seem to be available. These differences likely reflect differential localization of *Salmonella* in a membrane-delimited vacuole vs. *Shigella* freely residing in the host cell cytosol with unrestricted access to cytosolic metabolites. Metabolomics data suggest that *Shigella* infection causes major rearrangements of metabolic fluxes in the host cells. We currently explore such host cell activities as alternative targets for controlling infection.

Analysis of pathogen subpopulations

Salmonella reside in several distinct host microenvironments within the same infected tissue. These microenvironments differ in density of host defense cell types such as neutrophils and inflammatory macrophages and likely provide substantially different conditions for *Salmonella*. We are developing a set of complementary tools to isolate distinct *Salmonella* subpopulations from various microenvironments for system-level analysis. Current results suggest dramatic differences in stress exposure and growth rate in *Salmonella* subpopulations.
Publications 2014

McEwan, David G; Richter, Benjamin; Claudi, Beatrice; Wigge, Christoph; Wild, Philipp; Farhan, Hesso; McGourty, Kieran; Coxon, Fraser P; Franz-Wachtel, Mirita; Perdu, Bram; Akutsu, Masato; Habermann, Anja; Kirchof, Anja; Helfrich, Miep H; Odgren, Paul R; Van Hul, Wim; Frangakis, Achilles S; Rajalingam, Krishnaraj; Macek, Boris; Holden, David W; Bumann, Dirk; Dikic, Ivan (2014). PLEKHM1 Regulates Salmonella-Containing Vacuole Biogenesis and Infection. *Cell Host & Microbe*, Epub ahead of print.

Claudi, Beatrice; Spröte, Petra; Chirkova, Anna; Personnic, Nicolas; Zankl, Janine; Schürmann, Nura; Schmidt, Alexander; Bumann, Dirk (2014). Phenotypic variation of salmonella in host tissues delays eradication by antimicrobial chemotherapy. *Cell*, 158(4), 722-33.

Meunier, Etienne; Dick, Mathias S; Dreier, Roland F; Schürmann, Nura; Kenzelmann, Daniela; Warming, Sören; Roose-Girma, Merone; Bumann, Dirk; Kayagaki, Nobuhiko; Takeda, Kiyoshi; Yamamoto, Masahiro; Broz, Petr (2014). Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. *Nature*, 509, 366-370.

Burton, Neil A.; Schürmann, Nura; Casse, Olivier; Steeb, Anne K.; Claudi, Beatrice; Zankl, Janine; Schmidt, Alexander; Bumann, Dirk (2014). Disparate Impact of Oxidative Host Defenses Determines the Fate of Salmonella during Systemic Infection in Mice. *Cell Host & Microbe*, 15(1), 72-83.
Asymmetric cell division generates cellular diversity. Cell polarity, spindle orientation and cleavage furrow positioning are cellular mechanisms enabling cells to divide in a molecular and physical asymmetric manner. Stem cells in particular divide asymmetrically in order to self-renew the stem cell yet generate differentiating siblings. Many diseases such as breast cancer susceptibility, acute promyelocytic leukemia, the initiation of colon cancer but also the neurodevelopmental disorders lissencephaly or microcephaly are due to defective asymmetric stem cell division. Thus, understanding the cellular and molecular mechanisms of asymmetric cell division is important to increase our knowledge of basic stem cell biology.

We are using Drosophila melanogaster neuroblasts, the precursors of the fly’s central nervous system, to study the mechanism of (1) centrosome asymmetry and (2) cleavage furrow positioning during asymmetric cell division. Neuroblasts are polarized cells and divide in a stem cell-like fashion, undergoing repeated self-renewing asymmetric divisions (Fig. 1). The mitotic spindle invariably orients itself along the neuroblast intrinsic apical-basal polarity axis and asymmetric cleavage furrow positioning results in a physical and molecular asymmetric cell division, generating a large self-renewed apical neuroblast and a smaller differentiating basal ganglion mother cell (GMC). Drosophila neuroblasts provide an ideal experimental system because precise genetic manipulations are possible and superb imaging properties are available.

Mechanism and function of centrosome asymmetry during asymmetric cell division

Most metazoan cells utilize a pair of centrosomes to form a bipolar spindle. Centrosomes are microtubule organizing centers (MTOCs), consisting of a pair of centrioles, surrounded by pericentriolar matrix (PCM). Centrosomes are inherently asymmetric; centrioles duplicate in a semi-conservative manner – one centriole serves as a template for the formation of a new centriole – generating an older mother and a younger daughter centriole. Furthermore, molecular markers have been identified, specifically labeling the mother or daughter centrosome, respectively.

We are using Drosophila neuroblasts to study the molecular mechanisms and function of centrosome asymmetry. Neuroblast centrosomes undergo an elaborate dematuration and rematuration cycle in which the older mother centriole sheds PCM right after centrosome separation and, as a consequence, loses MTOC activity and thus its position on the apical cortex. This old centriole remains PCMfree during interphase, only regaining PCM and MTOC activity from prophase onwards. The daughter centriole, however, remains stationed in the apical half of the neuroblast because it retains PCM and MTOC activity throughout interphase (Fig. 2). We have shown that the conserved centriolar protein Bld10 (Cep135 in vertebrates) is required to establish centrosome asymmetry in Drosophila neuroblasts. Failure to establish centrosome asymmetry results in centrosome mispositioning, spindle
orientation defects and centrosome missegregation. We are using forward genetics and advanced imaging techniques such as in vivo live cell imaging and superresolution to study centrosome asymmetry during asymmetric cell division. Since mutations in Cep135 cause microcephaly, a rare neurodevelopmental disorder manifested in small but structurally normal brains, we are interested in investigating whether centrosome asymmetry is required for normal brain development.

Cleavage furrow positioning and sibling cell size asymmetry
Asymmetric cell division can result in the formation of molecularly and physically distinct siblings. We are using *Drosophila* neuroblasts to investigate how cell size differences are generated. In particular, we are focusing on the cellular and molecular mechanism of cleavage furrow positioning. Until recently, it was widely believed that cleavage furrow positioning is solely dependent on cues delivered by the mitotic spindle. However, new results suggest that two cues are used for the correct positioning of the contractile ring: (1) a microtubule-dependent cue and (2) a polarity derived signal. The novel polarity-dependent cleavage furrow positioning pathway is utilizing the two conserved polarity components Partner of Inscuteable (Pins; LGN/AGS3 in vertebrates) and Discs large (Dlg) ([Fig. 3](#)). We are investigating how cellular polarity is translated into asymmetric Myosin localization and ultimately, asymmetric cleavage furrow positioning. To this end we started to characterize and measure Myosin dynamics using photoconversion and FRAP. We further use forward and reverse genetics, live cell imaging and biochemistry in order to identify the molecular mechanisms underlying cleavage furrow positioning in *Drosophila* neuroblasts. We are also testing the idea whether other polarized cell types utilize the “polarity-dependent” pathway to position the cleavage furrow.

The mechanics of asymmetric cell division
To better understand how sibling cell size asymmetry is generated, we started to measure physical forces during asymmetric cell division. In collaboration with the lab of Daniel Mueller (D-BSSE; ETH Zurich), we are performing stiffness measurements using Atomic Force Microscopy (AFM) ([Fig. 4](#)). We also developed methods and tools to measure pressure and cytoplasmic streaming during ACD. These methods, in combination with novel live cell imaging approaches and mathematical modeling, will enable us to gain insights into the mechanics of asymmetric cell division.
Publications 2014

Group Members

Postdoctoral Fellows
- Dr. Emmanuel Gallaud
- Dr. Chantal Roubinet
- Dr. Tri Thanh Pham

PhD Students
- Anjana Ramdas Nair
- Anna Tsankova

Master Students
- Niklas Iffländer
- Marko Jukic
- José David Salvador Garcia
The aim of our studies is to gain a molecular understanding of the function of type IV secretion (T4S) systems in establishing bacterial persistence in the host. T4S systems are ancestrally related to bacterial conjugation systems that mediate interbacterial DNA transfer. Bacterial pathogens targeting eukaryotic host cells have adopted these supramolecular protein assemblies for the intracellular delivery of virulence factors from the bacterial cytoplasm directly into the host cell cytoplasm. Our longstanding research on the vascular tumor-inducing pathogens of the genus Bartonella revealed crucial roles of two distinct T4S systems, VirB and Trw, in the ability of these bacteria to colonize, invade and persist within vascular endothelial cells and erythrocytes, respectively (see Fig. 1, reviewed in Dehio, 2008, Cell. Microbiol.; and Harms and Dehio, 2012, Clin. Microbiol. Rev.). More recently, we have initiated a new project to study the role of the T4S system VirB in intracellular persistence of the closely related bacterial pathogens of the genus Brucella that represent the etiological agents of brucellosis – the worldwide most important bacterial zoonosis. We are using a multi-disciplinary research approach including genetics, genomics, biochemistry, structural biology, cell biology, animal experimentation and bioinformatics in order to reveal the cellular, molecular and evolutionary basis of T4S in bacterial persistence of Bartonella and Brucella. Moreover, we employ a systems biology approach to reveal the host cell signaling network underlying cell entry and intracellular persistence of these pathogens in order to define novel targets for the development of innovative anti-infectives.

Fig. 1 Effectors proteins translocated by the Bartonella T4S system VirB/VirD4 subvert human endothelial cell functions.

T4S systems play diverse roles in Bartonella-host interaction: They are essential for establishing persistent infection and contribute to host adaptability

A functional and comparative genomics approach allowed us to demonstrate that both the VirB and Trw T4S systems of Bartonella represent essential virulence factors for establishing persistent infection in mammals. Further, these virulence devices must have played major roles during evolution in facilitating adaptation of these pathogens to their specific mammalian reservoirs (Saenz et al., 2007, Nat. Genet.; Engel et al., 2011, PLoS Genetics). Genetic and cell biological analysis of Trw has shown that this T4S system mediates the host-restricted adhesion to erythrocytes (Vayssier et al., 2010). Important to note, during adoption of this dedicated role in host interaction this T4S system has lost its ancestral substrate transfer capability. In contrast, we have recently shown that the VirB T4S is capable of translocating DNA into endothelial host cells in a process similar to the interbacterial DNA transfer mediated by the ancestral conjugation systems (Schroeder et al., 2011, PNAS; reviewed in Llosa et al., 2012, Trends Microbiol.). However, the physiological role of the VirB T4S system is to translocate a cocktail of Bartonella effector proteins (Beps) into vascular endothelial cells that subvert cellular functions to the benefit of the pathogen (Schulein et al., 2005, PNAS). A recent evolutionary genomics study allowed us to propose that the horizontally acquired VirB T4S system and its translocated Bep effectors facilitated adaptations to novel hosts via two parallel adaptive radiations (Engel et al., 2011, PLoS Genet.). We showed that the functional versatility and adaptive potential of the VirB T4S system evolved convergently – prior to the radiations – by consecutive rounds of lineage-specific gene duplication events followed by functional diversification. This resulted in two diverse arrays of Bep effector proteins in the two radiating lineages of Bartonella. Together, we established Bartonella as a bacterial paradigm of adaptive radiation, allowing for the first time to study the molecular and evolutionary basis of this fundamental evolutionary process for the generation of organismic diversity in bacteria.

Structure/function analysis of VirB-translocated Bep effector proteins of Bartonella

The cocktail of Bep effectors translocated by the VirB T4S system into vascular endothelial cells mediates multiple cellular effects, including anti-apoptosis, internalization of bacterial aggregates via the Factin-independent invasome structure and proinflammatory activation (Schulein et al., 2005, PNAS). Defining the cellular targets and molecular mechanisms of how these Beps interfere with eukaryotic signaling processes have become a focus of our recent studies. The C-terminal parts of the Beps carry the Bep intracellular delivery (BID) domain that serves as T4S signal, but has in several instances adopted additional effector function within
host cells. A prominent example is the BID domain of BepA that binds adenylate cyclase to potentiate G_s-dependent cAMP production, which leads to inhibition of apoptosis in vascular endothelial cells (Pulliainen et al., 2012, PNAS). The N-terminal parts of the Beps carry diverse domains or peptide motifs considered to mediate effector functions within host cells. For instance, upon translocation the effectors BepD, BepE and BepF become tyrosine phosphorylated on short N-terminal repeat motifs, thereby interfering with eukaryotic signal transduction processes (Selbach et al., 2009, Cell Host & Microbe). Together with the Schirmer group (Biozentrum) we study the structure/function relationship of the Fic domains that are present in the N-terminus of multiple Beps and mediate posttranslational modifications of specific host target proteins via covalent transfer of AMP (AMPylation) (Palanivelu et al., 2011, Protein Sci.). A particular focus of these studies is the identification of target proteins and the regulation of the AMPylation activity, i.e. via binding of the Fic domain to an inhibitory protein termed antitoxin (Engel et al., 2012, Nature).

A systems biology approach to Bartonella and Brucella entry and intracellular persistence in human cells

The goal of InfectX (www.infectx.ch) – a research and development project (RTD) of the Swiss-wide systems biology initiative SystemsX.ch – is to comprehensively identify components of the human infectome for a set of important bacterial and viral pathogens and to develop new mathematical and computational methods with predictive power to reconstruct key signaling pathways controlling pathogen entry into human cells. In the frame of InfectX we use a systems biology approach to reconstruct the host signaling processes underlying Bartonella and Brucella entry into the human model cell line HeLa that lead to the establishment of a persisting intracellular infection. For Bartonella henselae, the VirB T4S effector BepG or the combined activity of the effectors BepC/BepF was found to inhibit endocytic uptake of individual bacteria, thereby redirecting bacterial uptake to the invasome-mediated pathway facilitating the uptake of large bacterial aggregates (reviewed in Eicher and Dehio, 2012, Cell. Microbiol.). This unique cell entry process is mediated by massive Factin rearrangements that depend on the small GTPases Rac1, the Rac1-effector Scar1, and the Factin organizing complex Arp2/3 (Rhomberg et al., 2009, Cell Microbiol.; Truttmann et al., 2011, Cell Microbiol.) and bi-directional signaling via the integrin pathway (Truttmann et al., 2011, J. Cell Sci.). The uptake process triggered by Brucella abortus is less well defined but considered to depend on lipid rafts and the small GTPase Cdc42. Genome-wide RNA interference screens and related modeling approaches currently performed on the basis of high-content fluorescence microscopy assays for pathogen entry and intracellular replication should facilitate the comprehensive identification of the human infectomes involved in establishing persistent intracellular infection of these pathogens as a first step towards the identification of human targets suitable for the development of a new class of anti-infectives that interfere with the function of host proteins essential for pathogen infection.

Fig. 2: Hela cells infected with GFP-expressing Brucella abortus (green) for 48 h and stained for F-actin (red) and DNA (blue). Intracellular bacteria replicate in an endoplasmic reticulum-associated compartment localizing proximal to the nucleus.
Publications 2014

Stanger, Frédéric V; Dehio, Christoph; Schirmer, Tilman (2014). Structure of the N-Terminal Gyrase B Fragment in Complex with ADP Pi Reveals Rigid-Body Motion Induced by ATP Hydrolysis. PloS one, 9(9), e107289.

Okujava, Rusudan; Guye, Patrick; Lu, Yun-Yueh; Mistl, Claudia; Polus, Florine; Vayssier-Taussat, Muriel; Halin, Cornelia; Rolink, Antonius G; Dehio, Christoph (2014). A Translocated Effector Required for Bartonella Dissemination from Derma to Blood Safeguards Migratory Host Cells from Damage by Co-translocated Effectors. PLoS pathogens, 10(6), e1004187.

Pieles, Kathrin; Glatter, Timo; Harms, Alexander; Schmidt, Alexander; Dehio, Christoph (2014). An experimental strategy for the identification of AMPylation targets from complex protein samples. Proteomics, 14(9), 1048-52.

Franceschini, Andrea; Meier, Roger; Casanova, Alain; Kreibich, Saskia; Daga, Neha; Andritschke, Daniel; Dilling, Sabrina; Rämö, Pauli; Emmenlauer, Mario; Kaufmann, Andreas; Conde-Álvarez, Raquel; Low, Shyan Huey; Pelkmans, Lucas; Helenius, Ari; Hardt, Wolf-Dietrich; Dehio, Christoph; von Mering, Christian (2014). Specific inhibition of diverse pathogens in human cells by synthetic microRNA-like oligonucleotides inferred from RNAi screens. Proceedings of the National Academy of Sciences of the United States of America, 111(12), 4548-53.

Group Members

Research Associates
Dr. Tjaart De Beer
Dr. Anne-Cécile Hiebel
Dr. Kevin Charles Smith
Dr. Isabel Sorg

Postdoctoral Fellows
Dr. Houchaima Ben Tekaya
Dr. Alain Casanova
Dr. Simone Eicher
Dr. Shyan Huey Low
Dr. Kathrin Pieles
Dr. Maxime Quebatte
Dr. Nikolaus Schmitz
Dr. Christoph Schmutz
Dr. Sabrina Siامر
Dr. Frédéric Valentin Stanger

PhD Students
Clement Barbier
Susanne Brükner
Alexander Harms
Yun-Yueh Lu
Simon Marlaire

Master Student
Jonas Körner

Administrative Assistant
Claudia Erbel-Sieler

Technical Associate
Claudia Mistl

Technical Staff
Mario Emmenlauer
Caroline Grey Hackett
Neural stem cells continuously generate new neurons in restricted areas of the adult mammalian brain. Adult stem cells reside in specialized niches that support their lifelong capacity for self-renewal and differentiation. Intriguingly, adult neural stem cells exhibit features of glial cells, raising the possibility that glial cells elsewhere in the brain may have latent stem cell potential. The ventricular-subventricular zone (V-SVZ), adjacent to the lateral ventricles, is the largest germinal niche in the adult brain and continuously gives rise to neurons that migrate to the olfactory bulb. We are investigating the intrinsic and extrinsic (niche) signals that regulate adult V-SVZ neural stem cells under homeostasis and during regeneration.

Quiescent neural stem cells in the adult brain have a radial morphology (red) and frequently send a long basal process that terminates on blood vessels (blue).

Purification and regulation of adult neural stem cells and their lineage

A key limitation in the adult neural stem cell field has been the identification of markers that allow the in vivo identification and isolation of adult neural stem cells. We have recently developed a simple strategy that allows the purification of both quiescent (dormant) and activated (dividing) adult neural stem cells as well as their progeny using fluorescence activated cell sorting (FACS) (Pastrana et al. 2009, Codega et al. 2014). Quiescent and activated stem cells isolated directly from their in vivo niche exhibit dramatically different cell cycle, molecular, and functional properties and have unique transcriptional signatures. This FACS purification strategy provides a powerful approach to investigate the biology of adult neural stem cells. In ongoing work we are defining the heterogeneity and potential of purified populations, as well as the gene regulatory networks underlying adult neural stem cell quiescence and activation.

Niche regulation of adult neural stem cells

We are using a combination of novel anatomical and in vitro approaches to elucidate the diverse niche components that mediate adult neural stem cell behavior.

Vascular niche: The vasculature is an important component of the V-SVZ neural stem cell niche, and has unique properties (Tavazoie et al., 2008). Stem cells directly contact blood vessels at specialized sites that lack astrocyte endfeet. An open question is whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain. We have optimized a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain micro-regions of non-transgenic mice. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states. We are comparing the effect of purified vascular cells from neurogenic and non-neurogenic (cortex) brain regions on cells isolated from each stage of the V-SVZ stem cell lineage. We are also defining endothelial and pericyte-derived factors that influence V-SVZ cells.
Cerebrospinal fluid niche: Adult neural stem cells contact the lateral ventricle via a thin process, and are continuously bathed by the cerebrospinal fluid (CSF). However little is known about the effect of the CSF compartment on adult neural stem cell function. We have found that the adult CSF compartment is a potent regulator of adult neural stem cells and their progeny and that its composition and functional effects change dynamically in different physiological states, including aging. CSF factors support the formation of multipotent self-renewing colonies from both activated stem cells and transit amplifying cells, as well as modulate survival of neural stem cells. Notably, we have also found that the composition and functional effect of CSF changes during aging, with differential effects on distinct stages of the stem cell lineage. We are currently examining the identity of factors in the CSF that regulate adult neural stem cells and their progeny.

Publications 2014

Codega, Paolo; Silva-Vargas, Violeta; Paul, Alex; Maldonado-Soto, Angel R; Deleo, Annina M; Pastrana, Erika; Doetsch, Fiona (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3), 545-59.

Maldonado-Soto, Angel R; Oakley, Derek H; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K; Henderson, Christopher E (2014). Stem Cells in the Nervous System. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists, 5.
We apply and develop high-resolution Nuclear Magnetic Resonance (NMR) methods to elucidate structure, function, and dynamics of biological macromolecules. The structural and functional projects currently encompass Abelson kinase, a prime drug target in the treatment of chronic myelogenous leukemia; the interactions of the G-protein-coupled receptor CCR5, which is also the HIV1-coreceptor, with its chemokine ligand RANTES; bacterial PiZ domains, which are targets for signaling via cyclic di-GMP; lipopolysaccharide, the causative agent of endotoxic shock; the TipA multidrug resistance protein of *Streptomyces lividans*; and an atomic-detail description of the unfolded states of proteins and the protein folding transitions by new NMR methods.

Abelson (Abl) kinase

Abelson (Abl) kinase is a drug target in the treatment of chronic myelogenous leukemia (CML), against which clinically highly efficacious ATP-competitive inhibitors (imatinib and others) have been developed. However, spontaneous mutations in advanced-stage patients render these inhibitors inefficient. Recently, a new type of allosteric inhibitors was shown in preclinical studies to overcome the resistance against ATP-binding pocket inhibitors [Zhang *et al.*, Nature, 463, 501-506, (2010)]. The exact mechanism of the allosteric inhibition is currently unclear. In collaboration with Novartis (Basel) we had previously determined the unknown solution conformations of the Abl kinase domain alone [Vajpai *et al.*, JBC, 283, 18292-18302 (2008)]. We have now also determined the solution conformations of a much larger 52-kDa SH3/SH2/kinase domain construct under the influence of various inhibitors by solution NMR and SAXS [Skora *et al.*, Proc Natl Acad Sci USA 110, E4437-45 (2013)]. The addition of imatinib induces a large structural rearrangement characterized by the detachment of the SH3-SH2 domains from the kinase domain and the formation of an “open” inactive state, which is inhibited in the ATP site. In contrast to imatinib, binding of the allosteric inhibitor GNF-5 keeps the protein in the “closed” state. Combination of imatinib with GNF-5 brings the conformation again to a “closed” state. These findings on the allosteric actions of the two classes of inhibitors reveal molecular details of their recently reported synergy to overcome drug resistance.

Multidrug Recognition

Thiostrepton-induced protein A (TipA) is a minimal bacterial, multidrug resistance (MDR) protein against very diverse antibiotics of the thiostrepton class. We have determined the solution structures and dynamics of the antibiotic binding domain of TipA in complexes with several antibiotics [Habazettl *et al.*, PNAS, Dec. 8, 2014]. The data give unique insights into multidrug recognition by a complete MDR system: (i) a four-ring motif present in all known TipA-inducing antibiotics is recognized specifically by conserved TipA amino acids and induces a large transition from a partially unfolded to a globin-like structure. (ii) The variable part of the antibiotic is accommodated within a flexible cleft that rigidifies upon drug binding. Remarkably, the identified recognition motif is also the major interacting part of the antibiotic with the ribosome. Hence the TipA multidrug resistance mechanism is directed against the same chemical motif that inhibits protein synthesis. This makes the multidrug recognition mechanism by TipA a useful model for ribosomal thiopptide binding and antibiotic development.

The NMR analysis of Abl, the key protein responsible for the development of chronic myelogeneous leukemia, reveals a delicate equilibrium between open and closed protein conformations in response to binding of ATP-site and allosteric inhibitors.

Mechanism of promiscuous antibiotic recognition by the antibiotic binding domain of TipA.
The chemokine receptor CCR5 belongs to the class of G-protein coupled receptors (GPCRs). CCR5 is expressed on the surface of T-cells and activated after binding the endogenous chemokines MIP-1α, MIP-1β, and RANTES. CCR5 is the key molecule for HIV entrance into target cells, which proceeds via the sequential interaction of the viral protein gp120 with the host-cell factors CD4 and CCR5. Very promising HIV entry inhibitors are based on CCR5 ligands, comprising the natural ligand RANTES. In recent years, we have obtained structural information on CCR5 and its complex with RANTES by studying the interaction of the soluble protein RANTES with peptides derived from the extracellular surface of CCR5 [Duma et al. J Mol Biol 365, 1063-1075 (2007)]. This information helped to devise more potent peptide-based HIV entry inhibitors [Chemistry & Biology 19, 1579-1588 (2012)]. As part of these efforts, we have recently characterized the dynamics, oligomeric states and detergent interactions of 5P12-RANTES, an engineered RANTES variant that is currently in phase I clinical trials [Wiktor et al., Biophys J, 105, 2586-97 (2013)]. We have also developed methods to produce CCR5 in sufficient amounts for structural and biophysical studies [Nisius et al. Protein Expr Purif 61, 155-162 (2008); Van den Bergh et al. PLoS One. 2012; 7: e35074; Wiktor et al. J. Biomol. NMR 55, 79-95 (2013)]. The project is embedded into the EU-FP7 project CHAARM (Combined Highly Active Anti-Retroviral Microbicides), a collaborative effort to develop combinations of new and existing anti-HIV agents, which can be applied topically to reduce transmission of HIV.

c-di-GMP signaling

Cyclic di-guanosinemonophosphate (c-di-GMP) is a bacterial signaling molecule that triggers a switch from motile to sessile bacterial lifestyles. This mechanism is of considerable pharmaceutical interest, since it is related to bacterial virulence, biofilm formation and persistence of infection. Understanding this mechanism may offer new routes to treatment of bacterial infections. We have recently solved the structure of the PilZ homolog PA4608 in complex with cyclic di-GMP [Habazettl et al. J Biol Chem 286, 14304 (2011)]. This complex shows large structural changes relative to the apo form. As a result of the rearrangements of N- and C-termini, a highly negative surface is created on one side of the protein complex. We propose that this movement of the termini and the resulting negative surface forms the basis for downstream signaling. We have recently also determined the exchange kinetics and equilibrium constants of various oligomeric forms of c-di-GMP [Gentner et al. J Am Chem Soc 134, 1019 (2012)]. These projects are in collaboration with the groups of Prof. Urs Jenal and Prof. Tilman Schirmer (Biozentrum).

Lipopolysaccharide (LPS, endotoxin)

Lipopolysaccharide (LPS, endotoxin) is a major component of the outer membrane of Gram-negative bacteria, which makes it a prime target for recognition by the innate immune system. In small amounts, LPS provokes a beneficial immune response. However, in larger amounts LPS causes endotoxic shock, which is highly lethal due to the lack of effective therapeutic approaches. A detailed molecular description of the recognition events of LPS is of great medical interest and essential for the understanding of pro-inflammatory processes of the innate immune system. In collaboration with Prof. U. Zähringer (FZ Borstel, Germany) we have been able to make LPS amenable to analysis by solution NMR conditions that mimic the bacterial membrane and to determine a structure that comprises the motif responsible for the endotoxic reac-

Left: docking of HIV-1 to the receptors CD4 and CCR5 on T-cell surface. Middle: electron micrograph showing detergent micelles containing CCR5. Right: 1H-15N spectrum of CCR5 in detergent micelles.
The application of high pressure at low temperature makes it possible to observe the cold-denatured state of ubiquitin by NMR at atomic resolution. This state contains native and non-native secondary structure elements that are very similar to the alcohol-denatured state. The transition can be studied in a continuous manner from the folded to the unfolded state.

Highly precise measurements of $\text{h}3\text{JNC}^c$ scalar couplings across hydrogen bonds as a function of temperature and pressure show that the functionally important C-terminal part of ubiquitin is particularly stabilized against perturbations.

Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network

Hydrogen bonds are key constituents of biomolecular structures, and their response to external perturbations may reveal important insights about the most stable components of a structure. NMR spectroscopy can probe hydrogen bond deformations at very high resolution through hydrogen bond scalar couplings (HBCs). However, the small size of HBCs has so far prevented a comprehensive quantitative characterization of protein hydrogen bonds as a function of the basic thermodynamic parameters of pressure and temperature. Using a newly developed pressure cell, we have mapped pressure- and temperature-dependent changes of 31 hydrogen bonds in ubiquitin by measuring HBCs with very high precision [Nisius and Grzesiek Nat Chem 4, 711-717 (2012)]. Short-range hydrogen bonds are mainly moderately perturbed, but many hydrogen bonds with large sequence separations (high contact order) show greater changes. In contrast, other high-contact-order hydrogen bonds remain virtually unaffected. The specific stabilization of such topologically important connections may present a general principle to achieve protein stability and to preserve structural integrity during protein function.

High pressure NMR reveals close similarity between cold and alcohol protein denaturation

Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, since usually heat denaturation causes aggregation, whereas cold or pressure denaturation occur at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. We have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2500 bar and 258 K by high-resolution NMR techniques [Vajpai et al. Proc Natl Acad Sci USA 110, E368-76 (2013)]. This state contains on the order of 20% native-like and non-native secondary structure.
elements. These structural propensities are very similar to the previously described alcohol-denatured (A-) state. The close similarity of pressure-assisted, cold-denatured and alcohol-denatured state supports a hierarchical mechanism of folding and the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at non-denaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2500 bar. This method should allow highly detailed studies of protein folding transitions in a continuous and reversible manner.

Important Partners
M. Blackledge, (Institut de Biologie Structurale, Grenoble, FR); S. Dames (Technical University, Munich, DE); L. Emsley (Ecole Normale Superieure de Lyon, FR); M. Geyer (Max-Planck-Institut für molekulare Physiologie, Dortmund, DE); O. Hartley (University of Geneva, CH); W. Jahnke (Novartis Pharma, Basel, CH); U. Jenal (Biozentrum); J. Lewandowski (University of Warwick, UK); G. Schertler (Paul-Scherrer Institut, Villigen); T. Schirmer (Biozentrum, Basel, CH); B. Schuler (University of Zürich, CH); H. Stahlberg (Biozentrum); C. Thompson (UBC, Vancouver, Canada); L. Vangelista (DIBIT, Milano, IT); U. Zähringer (Forschungszentrum Borstel, DE).

Publications 2014
Habazettl, Judith; Allan, Martin; Jensen, Pernille Rose; Sass, Hans-Jürgen; Thompson, Charles J; Grzesiek, Stephan (2014). **Structural basis and dynamics of multidrug recognition in a minimal bacterial multidrug resistance system.** Proceedings of the National Academy of Sciences of the United States of America, 111(51), E5498-507.

Lamley, Jonathan M; Iuga, Dinu; Oster, Carl; Sass, Hans Juergen; Rogowski, Marco; Oss, Andres; Past, Jaan; Reinhold, Andres; Grzesiek, Stephan; Samoson, Ago; Lewandowski, Józef R (2014). **Solid-state NMR of a protein in a precipitated complex with a full-length antibody.** Journal of the American Chemical Society, 136(48), 16800-6.

Group Members

Postdoctoral Fellows
Dr. Irena Burmann
Dr. Antoine Gautier
Dr. Judith Maria Habazettl
Dr. Shin Isogai
Dr. Alvin Leung
Dr. Hans-Jürgen Sass
Dr. Rajesh Sonti

PhD Students
Leonildo Cabral Delgado
Anne Grahl
Christian Opitz

Administrative Assistant
Tanja Fischer

Technical Staff
Ines Hertel-Hering
Marco Rogowski
Introduction
Cell growth is highly regulated. Cells respond to nutrients or other appropriate growth stimuli by up-regulating macromolecular synthesis and thereby increasing in size. Conversely, cells respond to nutrient limitation or other types of stress by downregulating macromolecular synthesis and enhancing turnover of excess mass. Thus, the control of cell growth involves balancing positive regulation of anabolic processes with negative regulation of catabolic processes. Growth is also controlled relative to cell division. In proliferating cells, growth is linked to the cell cycle such that most cells precisely double their mass before dividing. In other physiological contexts, such as load-induced muscle hypertrophy or growth factor-induced neuronal growth, cell growth is controlled independently of the cell cycle. Furthermore, in addition to the temporal control of cell growth described above, cell growth can be subject to spatial constraints. For example, budding yeast and neurons grow in a polarized manner as a result of new mass being laid down only at one end of the cell. Finally, in multicellular organisms, growth of individual cells is controlled relative to overall body growth such that the organs and tissues constituting the organism are properly proportioned.

The TOR signaling network
What are the mechanisms that mediate and integrate the many parameters of cell growth? In other words, what determines that a cell grows only at the right time and at the right place? Remarkably, the study of these mechanisms has been largely neglected, despite their clinical relevance and despite cell growth being, along with cell division and cell death, one of the most fundamental (and obvious) features of life. Also remarkable is the finding that cell growth control, regardless of eukaryotic organism or physiological context, seems always to involve the protein kinase TOR.
(Target Of Rapamycin) and its signaling network. TOR has thus become known as a central controller of cell growth. Indeed, the discovery of TOR led to a fundamental change in how one thinks of cell growth. It is not a spontaneous process that just happens when building blocks (nutrients) are available, but rather a highly regulated, plastic process controlled by TOR-dependent signaling pathways. TOR, originally discovered in our laboratory, is structurally and functionally conserved from yeast to human (including worms, flies, and plants). TOR in mammals (mTOR) controls cell growth and metabolism in response to nutrients (e.g., amino acids), growth factors (e.g., insulin, IGF-1, PDGF), and cellular energy status (ATP). Nutrients are the dominant TOR input as high levels of amino acids can compensate for an absence of the other mTOR inputs but not vice versa, and only nutrients activate TOR in unicellular organisms. The growth factor signaling pathway, grafted onto the more ancestral nutrient sensitive TOR pathway, co-evolved with multicellularity. TOR activates cell growth by positively and negatively regulating several anabolic and catabolic processes, respectively, that collectively determine mass accumulation and thus cell size. The anabolic processes include transcription, protein synthesis, ribosome biogenesis, nutrient transport, and mitochondrial metabolism. Conversely, TOR negatively regulates catabolic processes such as mRNA degradation, ubiquitin-dependent proteolysis, autophagy and apoptosis. TOR is an atypical serine/threonine kinase that is found in two functionally and structurally distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in mammals), each of which signals via a different set of effector pathways. TORC1 is rapamycin sensitive whereas TORC2 is rapamycin insensitive. The best-characterized phosphorylation substrates of mTOR are S6K and 4E-BP1 via which mTORC1 controls translation, and Akt/PKB via which mTORC2 controls cell survival and likely other processes. Like TOR itself, the two TOR complexes and the overall architecture of the TOR signaling network appear to be conserved from yeast to human. Thus, the TOR signaling network is a primordial or ancestral signaling network conserved throughout eukaryotic evolution to regulate the fundamental process of cell growth. As a central controller of cell growth and metabolism, TOR plays a key role in development and aging, and is implicated in disorders such as cancer, cardiovascular disease, obesity, and diabetes.

We are studying the TOR signaling network in the yeast Saccharomyces cerevisiae, in mammalian cells, in mice, and in human tumors. A major finding in our laboratory in recent years was the fact that TOR controls cell growth via two major signaling branches. Furthermore, we discovered the two TOR complexes and demonstrated that these two complexes correspond to the two previously described TOR signaling branches. More recently, in collaboration with our in-house colleague Markus Rüegg, we introduced the mouse as an experimental system to study the role of mTOR in regulating whole body growth and metabolism. In collaboration with the clinician Markus Heim, we have initiated a translational research project aimed at defining signaling pathways that allow tumors to evade therapy. The overall goal of our studies is to elucidate how growth and metabolism are regulated in health and disease.

Fig. 3: Adipose-specific mTORC1 knockout mice are resistant to diet-induced obesity.
Publications 2014

Skeletal muscle has an enormous capacity to adapt to external stimuli including physical activity, oxygen, temperature, nutrient availability and composition. Inadequate muscle function is linked to an increased risk for many chronic diseases such as obesity, type 2 diabetes, cardiovascular disorders, osteoporosis, neurodegenerative events, mood disorders, age-related muscle wasting, and certain cancers. Inversely, regular exercise is an excellent prevention and therapeutic intervention for many of these pathologies and improves life quality and expectancy.

Skeletal muscle cell plasticity in exercise is a complex process: even a single endurance exercise bout alters the transcription of more than 900 genes in muscle. Chronic exercise leads to a metabolic and myofibrillar remodeling, increase in tissue vascularization, adaptation of the neuromuscular junction, a shift in the balance between protein degradation and biosynthesis rates, elevated heme biosynthesis, improved reactive oxygen species detoxification and a resetting of the peripheral circadian clock. Due to this complexity, it is not surprising that our knowledge about the molecular mechanisms that underlie muscle cell plasticity remains rudimentary.

The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is one of the key factors in muscle adaptation to exercise. Muscle activity induces PGC-1α gene expression and promotes posttranslational modifications of the PGC-1α protein. In turn, PGC-1α regulates the adaptations of muscle to endurance training. Accordingly, ectopic expression of PGC-1α in muscle is sufficient to induce a trained phenotype whereas mice with a genetic ablation of the PGC-1α gene in muscle have an impaired endurance capacity.

Our group is studying the mechanisms that control muscle cell plasticity and their physiological consequences. We try to integrate molecular biology, work in muscle cells in culture and observations on mice with different activity levels to obtain a comprehensive picture of the adaptations in the active and the inactive muscle.

Regulation and coordination of metabolic pathways

Endurance exercise is a strong promoter of mitochondrial biogenesis and oxidative metabolism of lipids. At the same time, skeletal muscle of endurance athletes exhibits increased storage of intramyocellular lipids, similar to what is observed in muscle of type 2 diabetic patients (the “athlete’s paradox”). Furthermore, the boost in mitochondrial function potentially augments the generation in harmful side-products, e.g. incomplete fatty acid oxidation products or reactive oxygen species. However, neither the lipid accumulation nor the oxidative metabolism in the exercised muscle exert detrimental effects, in stark contrast to the pathologies that
develop under seemingly similar conditions in type 2 diabetes and other muscle-associated diseases. We study the coordination of anabolic and catabolic pathways in order to pinpoint the differences in substrate fluxes in the healthy and the diseased muscle.

Molecular changes in muscle atrophy and dystrophies
Muscle disuse, induced by a Western life-style or caused by diseases, leads to fiber atrophy, reduced muscle functionality and is ultimately fatal in certain inherited and sporadic muscular dystrophies. Little is known about the etiology of most of these diseases and as a result, no efficacious therapy exists for these devastating disorders. However, the induction of a trained phenotype ameliorates many of the symptoms of muscle wasting and thereby improves muscle function. For example, we have shown that using a genetic model for endurance training, PGC-1α muscle-specific transgenic mice, helps to ameliorate disuse-induced muscle fiber atrophy and Duchenne muscular dystrophy. Other groups have demonstrated that ectopically expressed PGC-1α also improves a mitochondrial myopathy, blunts muscle damage by the statin drugs and reduces sarcopenia, muscle wasting in aging in the respective animal models. We are currently studying how PGC-1α mediates this broad spectrum, health-beneficial effect on muscle and how this could be exploited therapeutically.

Integration of signaling pathways and spatiotemporal control of gene expression
In exercise, PGC-1α transcription, protein levels and activity are modulated by different signaling pathways. While all of the major signaling pathways in the trained muscle converge on PGC-1α (figure part A), the consequences, the integration and the temporal coordination of these signals are not clear. Upon activation, PGC-1α controls the transcription of many different gene families in muscle to promote a trained phenotype. However, the specificity of gene regulation by PGC-1α varies according to the cellular context (figure part B). For example, the regulation of postsynaptic neuromuscular junction genes by PGC-1α is spatially restricted to subsynaptic nuclei in the muscle fiber.
Publications 2014

Pérez-Schindler, Joaquín; Svensson, Kristoffer; Vargas-Fernández, Elyzabeth; Santos, Gesa; Wahl, Walter; Handschin, Christoph (2014). The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet. *Diabetologia*, 57(11), 2405-12.

Baresic, Mario; Salatino, Silvia; Kupr, Barbara; van Nimwegen, Erik; Handschin, Christoph (2014). Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program. *Molecular and cellular biology*, 34(16), 2996-3012.

Arnold, Anne-Sophie; Gill, Jonathan; Christe, Martine; Ruiz, Rocío; McGuirk, Shawn; St-Pierre, Julie; Tabares, Lucia; Handschin, Christoph (2014). Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. *Nature communications*, 5, 3569.

Morand, Réjane; Bouitbir, Jamal; Felsler, Andrea; Hench, Jürgen; Handschin, Christoph; Frank, Stephan; Krähenbühl, Stephan (2014). Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice. *European journal of nutrition*, 53(6), 1313-25.

We are interested in structural and functional details of integral outer membrane proteins and their biogenesis at the atomic level. Proteins in the outer membranes of Gram-negative bacteria and mitochondria are responsible for a wide range of essential cellular functions, including signal transduction, catalysis, respiration, and transport. Our main technique of expertise is nuclear magnetic resonance (NMR) spectroscopy, which we use together with complementary techniques to address our biological and biophysical questions. Part of our activities is the development of new and improved NMR techniques for studies of membrane proteins, such as advanced isotope labeling schemes and non-uniform data processing schemes. Such techniques are applicable to membrane protein systems but will also stimulate research on other challenging biomacromolecules.

Integral outer membrane proteins (Omps) in Gram-negative bacteria and mitochondria are synthesized in the cytosol of the cell and transported in an unfolded form to the respective target membrane (Fig. 1). For the transport across the aqueous compartments along this pathway, the Omps are stabilized by chaperones. From the chaperone-bound state the Omps fold into the lipid bilayer of the outer membrane, catalyzed by large β-barrel assembly machineries from the Omp85 family of proteins. We aim at a description of the entire biogenesis processes at the atomic level.

One key aspect in these pathways are molecular chaperones, which form a natural assembly line responsible for the transport of the unfolded membrane protein polypeptides prior to the final folding event. We employ high-resolution NMR studies of large 70-100 kDa membrane protein-chaperone complexes to provide an atomic resolution description of the underlying molecular mechanisms, such as Skp (Fig. 2, Burmann et al., Nat. Struct. Mol. Biol. (2013)). Subsequent projects address the other chaperones. We want to know the details how the polypeptide transport is accomplished, how the substrates are recognized and how the final folding and insertion step is catalyzed.

A second line of our research addresses the folding mechanism of β-barrel outer membrane proteins. In vivo, as the last event in outer membrane biogenesis, Omp substrates are inserted into the membrane by members of the Omp85 family of proteins. This family comprises the proteins BamA and TamA, but also two-particle secretion systems such as FhaC in Gram-negative bacteria, and Sam50 in mitochondria. Our goals are the determination of structures and structural models of the Tam, Bam and Sam complexes and an elucidation of their functional mechanism. Our hypothesis for the functional mechanism is the formation of a hybrid barrel as the folding intermediate (Fig. 3, Gruss et al., Nat. Struct. Mol. Biol. (2013)).
In vitro, many outer membrane proteins can fold and insert into a target membrane or membrane mimic also in the absence of an Omp85 foldase. The Omp folding process is a biophysically intriguing mechanism that is only poorly understood. We are developing new approaches to study outer membrane protein folding at atomic resolution by solution NMR spectroscopy in combination with single-molecule techniques (Fig. 4).

A third focus of interest is the structural biology of the mitochondrial outer membrane. From a structural biology perspective, this membrane is largely a “terra incognita.” The mitochondrial outer membrane features essential biological roles in the eukaryote, such as regulation of metabolism, apoptosis and cancer. Still, so far the atomic resolution structure of just a single integral outer membrane protein is known, the voltage-dependent anion channel VDAC (Hiller et al. Science (2008)). We are now addressing the function of the voltage-dependent anion channel VDAC and its complexes, which play crucial roles in the regulation of the cellular metabolism. By characterizing the complexes of VDAC with its natural ligands and its protein interaction partners, we attempt to elucidate the structural bases for these functions.

Fig. 4: Residue-specific folding kinetics of OmpX.

Fig. 5: 2D Methyl-TROSY NMR of VDAC in LDAO micelles.
Publications 2014

Group Members

Project Leader
Dr. Björn Burmann

Postdoctoral Fellows
Dr. Raphael Böhm
Dr. Lichun He
Dr. Leonor Morgado
Dr. Lorenzo Sborgi

PhD Students
Hugo Aragao Correia
Morgane Callon
Fabian Gruss
Jean-Baptiste Hartmann
Perla Rios Flores

Administrative Assistant
Tanja Fischer
Repeatedly imaged apical dendrite from a layer 5 neuron in vivo. The protrusions are dendritic spines which carry the majority of excitatory synapses. Spine changes are depicted by arrows, red: spine gained, blue: spine lost.

Our research is focused on understanding how neuronal circuits process visual information coming from the eye and integrate it with other signals to enable animals to interpret the visual world and interact with their environment. Furthermore, we investigate how these circuits change during learning and new experiences, allowing the brain to store new information and to adapt to changes in the environment.

To study these questions we use a wide range of multi-disciplinary methods: in vivo two-photon imaging of neuronal and synaptic function and structure, extracellular and intracellular electrophysiological recordings, animal behavior and theoretical modelling, together with molecular and genetic approaches to identify different cell types, record and manipulate their function and trace specific pathways.

Changes in visual circuits during learning
Learning alters our perceptions, cognition and behavior by modifying neuronal circuits in the brain. Understanding how this happens is crucial for understanding normal brain function, and for devising therapeutic approaches for correcting disorders of information storage and retrieval such as dementia. Yet the mechanisms of learning in the intact brain are not well understood. Relatively little is known about how new information is stored in neuronal circuits and how new experiences, which are behaviourally relevant for the animal alter single cells, their connections and the flow of information through neuronal networks. One reason for our lack of knowledge is that it has long been impossible to repeatedly record activity from the same identified neurons and their connections over the course of days or weeks. The newest generation of genetically-encoded calcium indicators in combination with two-photon laser scanning microscopy now makes this possible. These indicators allow us to visualize the activity of neuronal networks with single-cell and even single-synapse resolution in the intact brain.

To study learning-related changes in the brain, we are developing different behavioral paradigms for mice in which they have to learn visually-guided tasks. These tasks enable us to measure the animals’ visual perception and to assess their learning progress. We are then using calcium indicators to follow directly how the function of neurons in different visual areas changes when animals make new associations during visually-guided learning. Furthermore, we are studying which circuit modifications underlie these functional changes, by following individual synapses of different pathways over the time course of learning.

The function of higher-order thalamic pathways during vision
Visual perception relies on information flow from the eye to the visual cortex, where it is relayed and transformed via a series of thalamic and cortical processing stages. In recent years it has become increasingly clear that the traditional hierarchical model of sensory processing, which is based mostly on feed-forward flow of sensory information, is incomplete. Prominent feedback projections from higher-order brain areas and information from parallel circuits involving the thalamus impinge on every cortical processing level. Such major alter-
native pathways may convey contextual information, such as the animal’s motor output, previous experience, expectations and stimulus relevance, which can strongly modulate visual responses and influence how feed-forward sensory information is interpreted in the context of an animal’s internal state and behavior. However, little is known about what information is conveyed through these different pathways and how it influences the processing of feed-forward sensory information to allow animals to actively perceive and interpret the environment based on their past experience.

We are studying the organization and function of one major pathway that might integrate visual and non-visual information but which is still very elusive – the input from higher-order thalamic nuclei into visual cortex. We are studying the organization of these thalamo-cortical circuits in the mouse using anatomical tracing methods and are investigating which information is conveyed to different cortical areas by higher-order thalamic signals in the behaving animal and how it influences the processing of visual information.

Publications 2014

Our studies aim at understanding the molecular and cellular principles involved in the growth, differentiation and behavior of bacterial cells. We focus on the nucleotide second messenger, cyclic di-guanosine-monophosphate (c-di-GMP) and its role in bacterial cell signaling and dynamics (Schirmer & Jenal, 2009, *Nature Reviews Microbiol* 7, 724). C-di-GMP emerges as a ubiquitous signaling molecule that modulates multiple aspects of bacterial growth and behavior, including the formation of a sedentary, community-based lifestyle and its association with chronic forms of bacterial infections (Fig. 1) (Böhm 2010 *Cell*, 141, 107; Malone 2012 *PLoS Pathog.*, 8(6), e1002760; Steiner 2013 *EMBO J*, 32(3) :354). Our aims are to identify and characterize cdi-GMP control modules in different bacterial model organisms, to uncover and exploit the basic molecular and mechanistic principles of cdi-GMP signaling, and to probe its role in bacterial growth and persistence.

![Fig. 1: Schematic of c-di-GMP mediated signaling in bacteria.](image1)

Role of c-di-GMP in cell cycle progression and cell fate determination

We use *Caulobacter crescentus* as a model to investigate the role of c-di-GMP in cell polarity and cell cycle progression. Periodic fluctuations of c-di-GMP are an integral part of the *C. crescentus* cell cycle clock and serve to control pole development in time and space and to coordinate these processes with the underlying cell cycle. Several diguanylate cyclases (DGC) and phosphodiesterases (PDE) contribute to the characteristic bimodal distribution of the second messenger during the *Caulobacter* life cycle. One of our aims is to understand their regulation in time and space (Abel 2013 *PLoS Genet* 9(9): e1003744). E.g. the DGC PleD is activated by phosphorylation prior to S-phase entry and sequesters to the differentiating *Caulobacter* cell pole where it orchestrates pole morphogenesis and replication initiation (Fig. 2) (Paul 2008, *Cell* 133, 452, Abel 2011, *Mol Cell* 43, 550). *Caulobacter* G1-to-S transition is mediated by a second DGC, DgcB. In the G1 swarmer cell DgcB is “neutralized” by its specific and dominant antagonist PdeA, which reduces c-di-GMP in this cell type and keeps it in the motile, replication-inert phase. Upon entry into S-phase, when cells transit into sessility, PdeA is specifically degraded leaving DgcB unopposed. PdeA dynamically localizes to the old cell pole where it is degraded by the polar protease complex ClpXP. This cell cycle dependent process is orchestrated by the single domain response regulator CpdR, which itself localizes to the old cell pole in response to its phosphorylation status, where it recruits both PdeA and ClpXP and mediates substrate delivery (Abel 2011, *Mol Cell* 43, 550). Together, PDE degradation and DGC activation result in a rapid and robust upshift of c-di-GMP, which coordinately drives pole morphogenesis and S-phase entry (Abel 2011, *Mol Cell* 43, 550).

![Fig. 2: Network controlling cell cycle progression and pole development in C. crescentus. Phosphorylation reactions (blue), c-di-GMP network (green), and protein degradation pathways (orange) are indicated. Unidentified c-di-GMP effector proteins (E) regulating pole morphogenesis are indicated.](image2)

C-di-GMP controls all aspects of *Caulobacter* polarity, including flagellar motility, pili biogenesis as well as holdfast and stalk formation (Abel 2013 *PLoS Genet* 9(9): e1003744). The mechanisms and regulatory components contributing to timing and spatial control of polar organelle formation are one main focus of our current research (Davis 2013, *Genes Dev* 27, 2049). In parallel, we are interested in how c-di-GMP modulates *Caulobacter* cell cycle progression. The c-di-GMP up-shift facilitates replication and cell division control through
the controlled destruction of the replication initiation inhibitor CtrA and the cell division inhibitor KidO by the ClpXP protease complex. Cell cycle dependent degradation of these proteins entails a specific spatial arrangement where both protease and substrates transiently localize to the incipient stalked cell pole during the G1-S transition. Substrate delivery to the polar protease requires PopA, a protein that sequesters to the stalked pole upon binding of c-di-GMP (Duerig 2009, Genes Dev 23, 93). Our recent studies demonstrate how phospho-signaling, protein degradation, and c-di-GMP mediated regulatory processes are tightly interconnected to coordinately drive the Caulobacter life cycle (Fig. 2) (Abel 2011, Mol Cell 43, 550; Abel 2013 PLoS Genet 9(9): e1003744).

Role of c-di-GMP in biofilm formation and persistence
We have used Escherichia coli as a genetically versatile model organism to analyze the molecular basis of the inverse regulation of cell motility and biofilm formation by c-di-GMP. Our studies revealed that E. coli can fine-tune its swimming speed with the help of a molecular brake (YcgR) that, upon binding of c-di-GMP, interacts with the motor protein MotA to curb flagellar motor output (Böhm 2010 Cell, 141, 107). These experiments demonstrate that bacteria can modulate motor output in response to environmental cues. Our studies also led to identify c-di-GMP and ppGpp as key regulatory factors of poly-β-1,6-N-acetyl-glucosamine (poly-GlcNAc) synthesis, a polysaccharide adhesin secreted by E. coli as response to sub-inhibitory concentrations of antibiotics targeting the ribosome (Böhm 2009, Mol Microbiol. 72, 1500). The synergistic roles of ppGpp and c-di-GMP in biofilm induction, suggested that interference with bacterial second messenger signaling might represent an effective means for biofilm control during chronic infections.

Chronic Pseudomonas aeruginosa infections in cystic fibrosis (CF) patients can be treated with antibiotics, however full clearance is not possible due to the adaptation of infective species to a persistent lifestyle. Adaptive P. aeruginosa morphotypes include small colony variants (SCVs), slow growing and strongly adherent variants whose appearance correlates with poor lung function (Fig. 3). Our research on P. aeruginosa SCVs suggests that SCV-mediated persistence might be a novel target for antimicrobial chemotherapy. We characterized a tripartite signaling system called YfiBNR, mutations in which lead to the generation of SCV variants (Malone 2010, PLOS Pathogens, 6(3), e1000804). YfIN was shown to be a membrane-bound cyclic di-GMP synthase, whose activity is tightly controlled by YfIR and YfIB. Activation of YfIN resulted in increased levels of c-di-GMP, which in turn triggered massive production of exopolysaccharides, drastically reduced growth rates, and resistance to macrophage phagocytosis. Consistent with a role for the SCV phenotype in immune system evasion, activation of YfIN significantly increased the persistence of P. aeruginosa in long-term mouse infections. Moreover, the YfI system is under positive and negative selection in airways of CF patients (Malone 2012, PLoS Pathogens, 8(6), e1002760) driving population dynamics of persistent SCVs in vivo. These studies establish a firm causal link between SCV, cdi- GMP, and chronic P. aeruginosa infections.

Important Partners
Martin Ackermann (ETH Zürich); Howard Berg (Harvard University); Alain Filloux (Center for Molecular Microbiology and Infection, Imperial College, London, UK); Stephan Grzesiek (Biozentrum, University of Basel); Tilman Schirmer (Biozentrum, University of Basel); Torsten Schwede (Biozentrum, University of Basel); Victor Sourjik (DKFZ-ZMBH, University of Heidelberg); Daniel Ritz (Actelion Pharmaceuticals Ltd., Allschwil, Switzerland); Volker Roth (Department of Computer Science, University of Basel); Patrick Viollier (Department of Microbiology and Molecular Medicine; University of Geneva); Jörg Vogel (Institute for Molecular Infection Biology, Würzburg University); Julia Vorholt (ETH Zürich); Michaela Zavolan (Biozentrum, University of Basel).
Moscoso, Joana A; Jaeger, Tina; Valentini, Martina; Hui, Kailyn; Jenal, Urs; Filloux, Alain (2014). The diguanylate cyclase SadC is a central player of the Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. *Journal of bacteriology*, epub ahead of print.

Ozaki, Shogo; Schalch-Moser, Annina; Zumthor, Ludwig; Manfredi, Pablo; Ebbensgaard, Anna; Schirmer, Tilman; Jenal, Urs (2014). Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control. *Molecular microbiology*, 94(3), 580-94.

Fei, Na; Häussinger, Daniel; Blümli, Seraina; Laventie, Benoît-Joseph; Bizzini, Lorenzo D; Zimmermann, Kaspar; Jenal, Urs; Gillingham, Dennis (2014). Catalytic carbene transfer allows the direct customization of cyclic purine dinucleotides. *Chemical communications (Cambridge, England)*, 50, 8499-8502.

Fumeaux, Coralie; Radhakrishnan, Sunish Kumar; Ardissonne, Silvia; Théraulaz, Laurence; Frandi, Antonio; Martins, Daniel; Nesper, Jutta; Abel, Sören; Jenal, Urs; Viollier, Patrick H (2014). Cell cycle transition from S-phase to G1 in Caulobacter is mediated by ancestral virulence regulators. *Nature communications*, 5, 4081.

Sundriyal, Amit; Massa, Claudia; Samoray, Dietrich; Zehender, Fabian; Sharpe, Timothy; Jenal, Urs; Schirmer, Tilman (2014). Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP. *The Journal of Biological Chemistry*, 289, 6978-6990.
Karyopherin-centric control of nuclear pores (SNF/SNI)
Nuclear pore complexes (NPCs) are 50 nm-diameter aqueous channels that function as the main transport hubs between the cytoplasm and nucleus in eukaryotic cells. Exclusive access is orchestrated by nuclear transport receptors (NTRs) that interact with intrinsically disordered proteins known as FG Nups that otherwise generate a permeability barrier within the NPC. Our interest is to understand how multivalent NTR-FG Nup binding impacts on FG Nup barrier function and transport kinetics at the (i) biophysical level, (ii) within individual NPCs, and (iii) in cells. Our findings thus far indicate that a classical NTR known as Kapβ1 acts as a bona fide constituent of the FG Nup barrier and plays a role in modulating selective transport control in NPCs.

Fig. 1: Karyopherin-centric model of the nuclear pore complex. Artwork: Immanuel Wagner.

Fig. 2: Selective transport control in two-dimensions. The presence of preloaded Kapβ1 within the FG Nups results in a reduced binding of incoming Kapβ1 i.e., the “dirty velcro effect”. (Schleicher et al., Nature Nanotechnology 2014).

Biomimetic systems for selective transport control (NCCR Molecular Systems Engineering)
Nucleocytoplasmic transport is regulated by soluble nuclear transport receptors (NTRs) that exclusively enter NPCs to accumulate selective cargoes in the nucleus against concentration gradients. Here, we want to exploit this phenomenon as a means of implementing selective transport control in biomimetic systems. To do so, we are engineering molecular adaptors that can mediate between biological and synthetic systems. This includes constructing NPC-inspired biomimetic nanopores, as well as implementing twodimensional transport control using the so-called “dirty velcro effect”.

Fig. 3: ARTIDIS stiffness (left) and immunofluorescence (right) images show epithelial layer formation when cultured on native basement membrane (green) that reveals actin (red) cytoarchitecture typical for epithelial sheets in vivo. The cell nucleus is depicted in blue. Image: Philipp Oertle (Biozentrum, Basel) and Vasily Gurchenkov (institute Curie, Paris).
ARTIDIS and nanomechanical tissue diagnostics (KTI)
We have built an atomic force microscope (AFM)-based apparatus (i.e., ARTIDIS® "Automated and Reliable Tissue Diagnostics") to measure cellular stiffness with unsurpassed sub-cellular spatial resolution and high force sensitivity within living tissue.

By examining unadulterated human breast cancer biopsies, we have uncovered how the “softness” of cancer cells is associated with hypoxia and is fundamentally coupled to their propensity to invade and metastasize. This has resulted in a spinoff Nuomedis® that is commercializing ARTIDIS for clinical applications of nanomechanical tissue diagnosis.
Publications 2014

Kapinos, Larisa E; Schoch, Rafael L; Wagner, Raphael S; Schleicher, Kai D; Lim, Roderick Y H (2014). Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. *Biophysical Journal, 106*(8), 1751-62.

Fuxreiter, Monika; Tőth-Petróczy, Agnes; Kraut, Daniel A; Matouschek, Andreas T; Lim, Roderick Y H; Xue, Bin; Kurgan, Lukasz; Uversky, Vladimir N (2014). Disordered Proteinaceous Machines. *Chemical Reviews*, in press.

Schleicher, Kai D; Dettmer, Simon D; Kapinos, Larisa E; Pagliara, Stefano; Keyser, Ulrich F; Jeney, Sylvia; Lim, Roderick YH (2014). Selective transport control on molecular velcro made from intrinsically disordered proteins. *Nature Nanotechnology*, Advance online publication.

Group Members

Research Associate
Dr. Larisa Kapinos-Schneider

Postdoctoral Fellows
Dr. Binlu Huang
Dr. Radhakrishnan Panatala
Dr. Marija Plodinec

PhD Students
Philipp Oertle
Yusuke Sakiyama
Kai David Schleicher
Rafael Schoch
Deepika Sharma
Raphael Wagner
Ludovit Pavel Zweifel

Master Student
Sélim Benayat

Administrative Assistant
Tanja Fischer

Technical Associate
Chantal Rencurel

Technical Staff
Alexis Tello
Lipid biosynthesis and degradation are essential and tightly regulated cellular processes in all organisms and are closely linked to human health. Lipids are an important source of natural chemical diversity and integrate the metabolic state with cellular processes such as inflammatory response, transmembrane signaling and trafficking. Impaired lipid and fatty acid metabolism play considerable roles in the pathogenesis of some of the most common threats to human health, including type 2 diabetes, fatty liver disease, atherosclerosis and cancer. A key aim of our work is to improve our understanding of eukaryotic lipid and fatty acid metabolism and its regulation by elucidating the structure and functional principles of important protein players in this process.

Recent developments in lipid metabolomics allow quantitative studies of the cellular lipidome, real-time cellular imaging of lipid dynamics and systems biology studies on lipid networks and their regulation at the cellular scale. However, eukaryotic lipid and fatty acid metabolism remain a critical challenge for studies at the molecular and atomic scale: in contrast to simple prokaryotic systems, fatty acid metabolism in eukaryotes builds upon huge multifunctional enzymatic complexes more than all other metabolic pathways. Later steps of lipid metabolism are in large parts occurring in the membrane space and rely on membrane associated and integral membrane proteins, very few of which have been characterized structurally. Our work is focused on eukaryotic multienzymes and molecular machines involved in key steps of lipid and fatty acid metabolism and homeostasis.

Multienzymes integrate several functional domains for catalysis or substrate transfer into a single protein assembly, which carries out more than one enzymatic reaction step. A landmark example are giant eukaryotic fatty acid synthases, which comprise seven different enzymatic domains and carry out more than 40 reaction steps in the biosynthesis of fatty acids from carbohydrate-derived precursors. The interlinking, mechanical coupling and crosstalk between domains result in emergent properties of multienzymes beyond the functionality of their isolated building blocks. Multienzymes offer unique means for the consistent regulation of committed steps in fatty acid and lipid metabolism, which is critical for human health. Combining structure determination of multienzymes in fatty acid and lipid metabolism with functional studies we aim to elucidate regulatory mechanisms as well as fundamental architectural principles of multienzyme.

Polyketide synthases are the most complex biosynthetic multienzymes and are built upon assembly line logic. Individual modules, each related to the mammalian fatty acid synthase, processively extend a precursor module with varying carboxylic acid building blocks. The highly diverse and complex polyketide products include numerous compounds with outstanding biological activities, e.g. antibiotics, and are a promising source of novel drug candidates. Our studies on the general architecture of polyketide synthases serve to obtain complementary information on multienzymes organization and evolution. They also provide relevant insights for combinatorial biosynthesis of novel polyketide drug candidates. Understanding the functional coupling and emergent properties in key multienzymes ultimately is a prerequisite for the rational tailoring of existing or the design of novel molecular biosynthetic factories.

Foldases, Insertases and Translocases in bacterial protein secretion

While the principal mechanisms of intracellular protein folding and membrane integration of α-helical membrane proteins by the Sec translocase are well understood, the assembly and insertion process of β-barrel membrane proteins by members of the Omp85 family of β-barrel proteins is still elusive. β-barrel membrane proteins are particularly prominent in the outer membrane of gram-negative bacteria and contribute to bacterial pathogenicity and persistence. In collaboration with Sebastian Hiller (Biozentrum, University of Basel) we are studying foldase proteins of the periplasmic and extracellular bacterial space and β-barrel membrane protein assembly in a joint effort combining NMR, X-ray crystallography and biophysical characterization. We have obtained a high-resolution crystal structure of E. coli TamA, an outer membrane protein involved in the insertion and assembly of β-barrel autotransporters, by bicelle crystallization and seeding. TamA comprises three N-terminal POTRA domains and a
C-terminal 16-stranded β-barrel. A striking feature is a kink towards the inside of the barrel formed by the C-terminal strand of the barrel. This kinked structure opens a gate to the lipidic phase for incoming substrates and creates a weak lateral contact in the barrel wall. These unique structural features suggest a mechanism for autotransporter insertion based on barrel expansion and lateral release. Sequence and structural conservation indicate that this mechanism may be of general relevance for all membrane protein insertases of the Omp85 family including the mitochondrial and bacterial general insertases, Sam50 and BamA. Further studies are required to understand how the Omp85 architecture mediates not only membrane protein insertion but also protein translocation across the membrane in specific bacterial two-partner secretion systems, exemplified by the Omp85 translocase FhaC and its transport substrate filamentous hemagglutinin. We aim to obtain further insights into the insertion mechanism and the relevance of individual protein features for insertion and translocation by combining structural and functional studies on Omp85 target proteins.

Catch-bond lectins in infection and inflammation

The life-time of most protein-ligand complexes is reduced under tensile force. However, some proteins exhibit catch-bond behavior: the life-time of their ligand complexes increases under tensile force up to a certain threshold. Prominent examples include carbohydrate-binding cell adhesion proteins specifically adapted to flow-induced shear forces, such as the bacterial adhesin FimH and human E-selectin. FimH is located at the tip of surface pili of *E. coli* and mediates adhesion to host-cell glycoproteins as a first step in urothelial infection. E-selectin is expressed on vascular endothelia and mediates leukocyte rolling as a prerequisite for tissue transmigration of leukocytes in the early inflammatory response. Together with Beat Ernst (Pharmazentrum, University of Basel) and Rudi Glockshuber (ETH Zürich) we study these systems in a multidisciplinary effort combining biophysical, structural and pharmacological approaches. A key aim of our work is to provide a detailed understanding of domain interactions and their crosstalk with ligand binding as a mechanistic basis for catch-bond behavior and to define and confirm relevant states for ligand design and pharmacological intervention.

A hybrid approach in structural biology

Our approach to structural biology builds on combining X-ray crystallography as a key method to obtain insights at atomic resolution with electron microscopy, NMR spectroscopy and Small-angle X-ray scattering for studies of non-crystalline proteins. Chemical biology approaches to the stabilization and trapping of transient complexes as well as massspectrometric distance-restraint generation by chemical crosslinking (XL-MS) and molecular dynamics simulations provide further information on dynamic complexes and states. Biophysical characterization of macromolecular interactions and biochemical analysis of biological function provides critical complementary results. The lab is well set for all aspects of modern protein production and structural analysis. Facilities are available for large-scale protein expression in bacterial, yeast, insect and mammalian systems. Crystallization is aided by microfluidic screen preparation and nanoliter robotics for crystallization setup and automated seeding. We are using combined SONICC, UV-two photon excited fluorescence and trace-label fluorescence in an automated manner for reliable crystal and nanocrystal detection in standard and lipidic phase crystallization. Crystallographic data collection is carried out at the nearby Swiss Light Source. NMR and electron microscopic work is carried out in collaboration with the groups of S. Hiller and H. Stahlberg at the Biozentrum. Excellent support in proteomics and biophysical characterization of molecular interactions is provided by central ser-
vice facilities. The focal area Structural Biology & Biophysics provides a highly collaborative environment between groups with expertise in all major techniques in structural biology.

![Image: Prof. Dr. Timm Maier](image)

Fig. 4: Integration of structural data from chemical cross linking mass spectrometry (XL-MS) and small angle X-ray scattering with high resolution structural information from electron microscopy, NMR spectroscopy and X-ray crystallography provides a comprehensive representation of macromolecular complexes.

Publications 2014

Group Members

Postdoctoral Fellows
- Dr. Roman Jakob
- Dr. Roland Preston
- Dr. Evelyn Sauer
- Dr. Edward Stuttfeld

PhD Students
- Friederike Benning
- Habib Bukhari
- Fabian Gruss
- Dominik Herbst
- Moritz Hunkeler
- Stefan Imseng
- Dr. Solène Martin

Master Student
- Anna Hagmann

Administrative Assistant
- Marlise Frick

Technical Associate
- Rita Müller
The research in my lab aims to understand how sensory function emerges from highly complex synaptic interactions in large neuronal populations. I believe the best way to understand this complexity is to (i) record activity in single neurons and large neuronal ensembles in the intact brain during sensation, (ii) map connections between identified components of this circuit, and (iii) use computational models to understand which circuit components are important for single neuron and network function.

Methods

We are addressing how different components of the visual cortex circuit give rise to its function using a combination of methods, including two-photon calcium imaging in anaesthetised and behaving mice, *in vitro* whole-cell recordings, *in vivo* whole-cell and extracellular recordings, optogenetics, visual behavioural tasks, and computational modelling.

Functional organisation of microcircuit connectivity in visual cortex

Determining how the organisation of neural circuitry gives rise to its function is a major challenge for understanding the neural basis of perception and behaviour. In order to determine how different regions of the neocortex process sensory information, it is necessary to understand how the pattern and properties of synaptic connections in a specific sensory circuit determine the computations it performs. We have begun forging the relationship between synaptic connectivity and neuronal function in primary visual cortex (V1) with the aim of revealing circuit-level mechanisms of sensory processing. To this end, my laboratory has developed a new method, by which visual response properties of neurons are first characterised with two-photon calcium imaging *in vivo*, and then synaptic connections between a subset of these neurons are assayed with multiple whole-cell recordings in slices of the same tissue (Ko, Hofer et al, 2011, *Nature*). Using this approach, we found that connection probability between nearby excitatory neurons is intimately related to the similarity of their responses to oriented stimuli and natural movies. This functionally organised pattern of local excitatory connections reveals the fine-scale specificity by which neurons may influence each other through local excitatory connections, and points to the existence of subnetworks dedicated to processing of related sensory information.

Interactions between excitatory and inhibitory neuronal populations

The capacity of the neocortex to process sensory information depends on neuronal interactions between excitatory and inhibitory cell types. However, the relationship between connectivity, receptive field properties and network dynamics of different cell types are not well understood. We have shown that the differences in connectivity between excitatory neurons and fast-spiking inhibitory (parvalbumin-expressing) interneurons in V1 influence the specificity by which these inhibitory subpopulations respond to sensory stimuli, and the extent to which their activity is influenced by visual input (Hofer, Ko et al, 2011, *Nature Neuroscience*).
Development of functional microcircuits
Using imaging in vivo, connectivity mapping in vitro and network modelling, we found that the functionally specific arrangement of connections in visual cortex is instructed by patterns of feedforward input after eye opening (Ko, Cossell et al., 2013, Nature, in collaboration with Sonja Hofer).

Current projects
• Functional circuit mapping: forging the relationship between the organization of excitatory and inhibitory synaptic connections and the detailed sensory response properties of neurons in visual cortex.
• Description of neuronal population dynamics during visual information processing in relation to excitatory and inhibitory cell types.
• Determining the influence of stimulus context, reward or expectation on neural representations in visual cortex, using electrophysiological recordings in single neurons and population imaging in behaving animals.
• Optogenetic manipulation of the circuit to investigate the impact of different neuronal classes and cortical areas in visual processing in anaesthetised and behaving mice.
• Building a biophysically realistic network model of the visual cortex microcircuit, relying on connectivity data and biophysical properties of cortical cell types (in collaboration with Angus Silver, University College London).

Publications 2014
Cell proliferation depends on passage of cells through a series of biochemical reactions that are collectively termed “cell cycle”. This fundamental process is indispensable for the development of an entire organism from a single cell (fertilized egg), as well as the constant renewal of most cells throughout adult life. Key events during cell cycle progression include the duplication of the chromosomes (the genome) and their subsequent segregation to two nascent daughter cells. Chromosome segregation occurs during a cell cycle phase known as “mitosis”, a highly dynamic and spectacular stage of the cell cycle (Fig. 1). The main goal of our research is to elucidate the mechanisms that regulate mitosis in time and space and thereby ensure the error-free segregation of chromosomes. A better understanding of mitosis will hopefully illuminate the origins of the chromosome aberrations (aneuploidies) that give rise to birth defects and constitute hallmarks of aggressive human tumors.

Central to mitosis is the spindle apparatus, a complex and highly dynamic microtubule-based structure that captures chromosomes through specialized protein structures termed kinetochores (Fig. 2). Hence, we study the composition, regulation and dynamics of the mitotic spindle and kinetochores. In addition, we aim at elucidating the function of a surveillance mechanism – the spindle assembly checkpoint – that monitors the complete attachment of all mitotic chromosomes to the spindle.

At the two poles of the spindle apparatus are tiny organelles known as “centrosomes” (Fig. 3). The biogenesis, duplication and function of centrosomes (and their constituent centrioles) constitute a second major research focus of our laboratory. Centrosomes function to organize microtubule arrays in most animal cells and are present as only one or two copies per cell, depending on cell cycle stage. At the core of each centrosome are two microtubule-based cylindrical structures called “centrioles”, embedded in a matrix of pericentriolar proteins. Deregulation of the centrosome/centriole duplication cycle is believed to constitute a major cause of chromosome mis-segregation during the development of human cancers. Furthermore, certain brain diseases (notably microcephaly) and some forms of dwarfism have been causally linked to mutations in specific centrosomal proteins. Importantly, centrioles function also as basal bodies for the formation of cilia and flagella in quiescent cells, and mutations in genes coding for centriole/basal body proteins contribute to a multitude of diseases and syndromes (ciliopathies) that reflect the absence or malfunction of the basal-body/ciliary apparatus.

Our laboratory combines reverse genetics (e.g. RNA interference), immunocytochemistry (including structured illumination super-resolution microscopy) and multiple biochemical techniques (notably mass spectrometry) to unravel the molecular mechanisms that ensure correct centrosome duplica-
tion and chromosome segregation in human cells. Many of our studies focus on phosphorylation (a reversible protein modification controlled by kinases and phosphatases). Studying mostly human cells in culture, we have used mass spectrometry to establish inventories of proteins and phosphorylation sites in the spindle apparatus, the kinetochore and the centrosome. More recently, we focus on the wiring of key regulatory circuits, as defined by kinases, phosphatases, and selected substrates. We anticipate that our work will lead to a better understanding of the regulation of chromosome segregation and centrosome duplication in normal cells, as well as provide insights into the deregulation of these processes in disease.

In the recent past, we have discovered and characterized several novel spindle components and proteins implicated in centrosome duplication. Of particular interest is our discovery of Plk4 as a key regulator of centriole biogenesis and the demonstration that a ternary complex of Ska proteins (Ska1, 2 and 3) plays a major role in stabilizing the attachment of spindle microtubules to kinetochores. Ongoing work concerns the function and regulation of several cell cycle-regulatory kinases, including Polo-like kinases (notably Plk1 and Plk4), Aurora kinases and spindle checkpoint kinases (Mps1 and Bub1).

One major challenge in contemporary biological and biomedical research concerns the development of technologies that will permit the acquisition of quantitative information about the abundance, localization and dynamics of proteins and protein modifications under physiological conditions. We anticipate that such technologies will become increasingly important not only in systems biology but in life science research altogether. Hence, we have optimized mass spectrometry based procedures (selected reaction monitoring) that allow us to monitor, in quantitative terms, the abundance of key components involved in both centrosome duplication and chromosome segregation. In parallel, we have begun to use somatic gene targeting approaches that should allow us to visualize and quantify a subset of these very same components in time and space.

The cell cycle field holds considerable promise for the development of novel therapeutic approaches. In particular, it appears legitimate to hope that new information on the mechanisms that govern chromosome segregation and cell division will contribute to the design of novel strategies to thwart cancer growth. This has been widely recognized not only in Academia, but also in the Pharmaceutical and Biotechnology industry, providing ample opportunities for collaboration and translational research.

Fig. 3: Centrosomes organize microtubule arrays. A cultured human cell was costained with antibodies against the protein kinase Plk4, a key regulator of centriole duplication (green), and antibodies against the cytoskeletal component tubulin (red). Size bar: 5 μm.
Publications 2014

Bauer, Manuel; Ahrné, Erik; Baron, Anna P; Glatter, Timo; Fava, Luca L; Santamaria, Anna; Nigg, Erich A; Schmidt, Alexander (2014). Evaluation of Data-Dependent and -Independent Mass Spectrometric Workflows for Sensitive Quantification of Proteins and Phosphorylation Sites. *Journal of proteome research*, 16.

Abad, Maria Alba; Medina, Bethan; Santamaria, Anna; Zou, Juan; Plasberg-Hill, Carla; Madhumalar, Arumugam; Jayachandran, Uma; Redli, Patrick Marc; Rappsilber, Juri; Nigg, Erich A; Jeyaprakash, A Arockia (2014). Structural basis for microtubule recognition by the human kinetochore Ska complex. *Nature communications, 5*, 2964.
RESEARCH GROUP JEAN PIETERS
Role of signal transduction in pathogen persistence and lymphocyte survival

Our laboratory is investigating signal transduction processes that are involved in the body’s responses towards environmental stimuli. One important part of our research aims to understand the mechanisms of immune cell activation. Also, we are interested in elucidating how pathogens cause disease despite the presence of a functioning immune system. Immune cell activation, as is the case for all eukaryotic cells, strongly depends on the triggering of cell surface receptors in order to transmit signals to diverse signaling pathways that allow the cell to respond appropriately. A major aim in the laboratory is to unravel the biochemical and molecular mechanisms involved in such signal transduction.

Coronin 1 signaling in leukocytes
A major focus in the laboratory concerns the analysis of coronin 1-dependent signaling. We originally defined coronin 1 as a host protein utilized by *M. tuberculosis* to survive within macrophages (*Cell* (1999) 97:435; *Science* (2000) 288:5471). To understand the mechanisms of action of coronin 1 as well as its normal function in leukocytes, we generated coronin 1 deficient mice. This approach allowed us to molecularly dissect how coronin 1 modulates the survival of *M. tuberculosis* inside macrophages: upon infection by *M. tuberculosis*, coronin 1 is responsible for the activation of the Ca^{2+}-dependent phosphatase calcineurin, thereby preventing mycobacterial killing within lysosomes (*Cell* (2007) 130:37). Recent work from the laboratory suggests that upon inflammatory stimuli, coronin 1 activates phosphoinositol (PI)-3-kinase in order to induce the rapid elimination of pathogens (Bosedasgupta and Pieters, *PloS Pathogens*, 2014).

Importantly, in *vivo*, coronin 1 is required for the maintenance of T lymphocytes in peripheral lymphoid organs (Mueller et al., *Nature Immunol.*), (2008), 9:424). We uncovered that coronin 1 is essential for the activation of the Ca^{2+}/calcineurin pathway following T cell activation thereby regulating T cell homeostasis (*Fig. 1*). As a consequence, in both mouse and humans, coronin 1 depletion results in a profound depletion of naïve T cells (Jayachandran et al., *Nature Review Immunology*, 2014). Interestingly, mice lacking coronin 1 are resistant towards a variety of autoimmune stimuli (Siegmund et al., *J. Immunol.* (2011) 186:3452). Ongoing studies aim to understand the role for coronin 1 in maintaining naïve T cells.

Coronin 1-dependent activation of neurons
Recent work followed up on the realization that besides immune cells, also a certain class of neurons, the excitatory neurons, express coronin 1. Interestingly, coronin 1 is encoded in a genomic region associated with neurobehavioral dysfunction. In recent work we found that coronin 1 plays an important role in cognition and behavior by regulating the cyclic AMP (cAMP) signaling pathway: when cell surface receptors are activated, coronin 1 stimulates cAMP production and activation of the protein kinase A. Coronin 1 deficiency resulted in severe functional defects at excitatory synapses. Furthermore, in both mice and humans, deletion or mutation of coronin 1 causes severe neurobehavioral defects, including social deficits, increased aggression, and learning disabilities. Strikingly, treatment with a membrane-permeable analogue of cAMP restored synaptic plasticity and behavioral defects in mice lacking coronin 1. Together this work not only shows a critical role for coronin 1 in neurobehavior but also defines a new role for the coronin family in regulating the transmission of signals within cells (Jayachandran et al., *PloS Biology*, 2014).

A conserved pathway sensing cell surface stimulation?
Coronin 1 is one of seven coronin molecules expressed in mammalian cells, and whether or not there is redundancy among the different coronins remains unknown. We have recently initiated a project in which we analyze the role of the coronin 1 homologue in the lower eukaryote *Dictyostelium discoideum*, that only expresses one single short coronin isoform. It turns out that in *Dictyostelium*, coronin is required for the initiation of the developmental processes associated with starvation, that also involves activation of the cAMP/protein kinase A pathway (see Vinet et al., *MoBC*, 2014). Current work aims to unravel the molecular details of the coronin-mediated activation of the cAMP/PKA pathway leading to *Dictyostelium* multicellular development.
Fig. 2: Localization of coronin 1 at synapses: Coronin 1 colocalizes with synaptic markers in excitatory neurons. In such neurons of the amygdala, coronin 1 modulates activation of the cAMP/Protein kinase A pathway. As a consequence, coronin 1 depletion results in severe neurobehavioral defects. See Jayachandran et al., PloS Biology 2014.

Fig. 3: In the absence of coronin, Dictyostelium discoideum fails to initiate multicellular aggregation upon starvation (Vinet et al., MoBC 2014).
BoseDasgupta Somdeb, Pieters Jean (2014). How to clear a pathogen during inflammation: Switching from phagocytosis to macropinocytosis through coronin 1 phosphorylation. *Inflammation & Cell Signaling*, 1, e199.

Gruber, Andreas R; Martin, Georges; Müller, Philipp; Schmidt, Alexander; Gruber, Andreas J; Gumieny, Rafal; Mittal, Nitish; Jayachandran, Rajesh; Pieters, Jean; Keller, Walter; van Nimwegen, Erik; Zavolan, Mihaela (2014). Global 3’ UTR shortening has a limited effect on protein abundance in proliferating T cells. *Nature communications*, 5, 5465.

BoseDasgupta, Somdeb; Pieters, Jean (2014). Coronin 1 trimerization is essential to protect pathogenic mycobacteria within macrophages from lysosomal delivery. *FEBS letters*, S0014.

von Burg, Nicole; Chappaz, Stéphane; Baerenwaldt, Anne; Horvath, Edit; Bose Dasgupta, Somdeb; Ashok, Devika; Pieters, Jean; Tacchini-Cottier, Fabienne; Rolink, Antonius; Acha-Orbea, Hans; Finke, Daniela (2014). Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. *Proceedings of the National Academy of Sciences of the United States of America*, 111(35), 12835-40.

The vast arrays of different neural cell types that characterize the complex circuits of the brain are generated by neural stem cells. In Drosophila, the neural stem cells, called neuroblasts, are similar to vertebrate neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. Recent work has shown that the numerous cell types that make up the central brain of Drosophila derive from a set of approximately 200 neuroblast pairs, each of which generates its own lineage-specific unit of neural progeny. We focus on these neural stem cells and use a comprehensive set of genetic, genomic and transgenic methods to investigate how the balance between stem cell self-renewal and neural differentiation including programmed cell death is precisely controlled to generate the lineage-specific units of the brain and specify the number and diversity of cell types in each of these units. In doing so, we also aim to analyze the cellular and molecular mechanisms by which deregulated neuroblast proliferation leads to the formation of brain tumors.

Insight into the neural stem-cell dependent mechanisms that operate during normal brain development has been obtained for several different classes of Drosophila brain neuroblasts. First, studies on the set of Drosophila brain neuroblasts (type II neuroblasts) that amplify proliferation through intermediate neural progenitors have shown that these multipotent amplifying neuroblasts, located in the central brain, are in fact neuroglioblasts and give rise both to interneurons of the brain central complex and, surprisingly, to optic lobe glial cells (Viktorin et al., 2013). Additional analysis of the early embryonic and larval development of these type II lineages have shown that they initially establish a central brain primordium structure during embryonic development, that is used for formation of complex brain circuitry during postembryonic brain development, before they are integrated into the adult brain circuitry of the central complex (Riebli et al., 2013). This indicates that early-born neurons from type II neuroblast lineages have dual roles in the development of a complex brain neuropile. During larval stages they contribute to the formation of a specific central complex primordium; during subsequent pupal development they undergo extensive remodeling and incorporate into the modular circuitry of the adult brain.

Second, studies of the neuroblast lineages that give rise to the central olfactory circuitry of the brain have uncovered key roles of the homeodomain transcription factor Orthodenticle. Thus, we have shown that specific neural stem cell lineages in the developing olfactory system require Orthodenticle for normal development, and that the loss of Orthodenticle in the neuroblasts results in neural progeny that either undergo programmed cell death or manifest severe neural projection defects (Sen et al., 2014). Hence this transcription factor is essential for the formation of interconnected olfactory system circuitry in the antennal lobe. Moreover, we have demonstrated that an astounding functional rewiring of the macrocircuitry of the Drosophila brain can result from the change of expression of a single transcription factor, namely Orthodenticle, in a single neuroblast, such that an entire sensorimotor integration circuit is completely transformed into an olfactory sensory circuit in neuroanatomical, molecular and functional respects (Sen et al., in revision). This remarkable ability to change the functional macrocircuitry of the brain through changes in gene expression in a single neural stem cell reveals a surprising capacity for novel circuit formation in the brain and provides a paradigm for largescale evolutionary modification of neural circuitry.

Third, new insight has been obtained into the neuroblast lineages that generate the subesophageal ganglion (SEG), the part of the central brain responsible for feeding behavior and the processing of gustatory information. For this, the general neuroanatomical features of the larval SEG were determined and compared to those of a thoracic ganglion. Based on this neuroanatomical analysis, the adult-specific neuroblast lineages in the SEG were identified leading to the finding that a surprisingly small number of lineages, 13 paired and one unpaired lineages, are present at the late larval stage. Clonal MARCM labeling was then used to characterize each of these lineages and show that most of them express one of the Hox genes Deformed, Sex combs reduced, and Antennapedia.
Hox gene inactivation in these neuroblast lineages caused lineage-specific axonal targeting defects and neural cell number reduction as well as formation of ectopic neuroblast lineage types not present in the wildtype brain. Clonal inactivation of apoptosis resulted in comparable ectopic lineages implying that Hox genes are required for lineage-specific proliferation termination through programmed cell death. Taken together, this work shows that postembryonic development in the SEG is mediated by a small set of neuroblast lineages and requires lineage-specific Hox gene action to ensure the correct formation of adult-specific neurons (Kuert et al., 2014).

Previous work on Drosophila neuroblasts indicates a causative link between impaired neural stem cell proliferation and brain tumor formation in this genetic model system, and supports the hypothesis that impaired cellfate determination is a major cause of cancerous overgrowth in the brain (reviewed in Jiang and Reichert, 2014a, b; Kang and Reichert, 2014; Reichert, 2014). We have made significant contributions to this area of stem cell research in several respects. In collaborative work with the Knoblich lab in Vienna, we have focused our studies of tumorigenic dysregulation in neuroblast lineages in the fly brain and this has led to a recent advance in neural stem cell biology in Drosophila namely to the demonstration that epigenetic processes play a central role in neural stem cell proliferation control. Thus, we have shown that the SWI/SNF chromatin remodeling complex is essential for the suppression of stem cell-derived tumorigenesis in the brain by ensuring correct lineage progression in neural stem cell lineages, and that notably the Osa component of this complex is required for a transcriptional program that initiates temporal patterning, limits selfrenewal and prevents dedifferentiation (Eroglu et al., 2014).

In further collaborative studies on neural stem cell dysregulation with the Knoblich lab, we have uncovered a regulatory transcriptional loop that controls proliferation and differentiation in Drosophila neuroblasts. In this work we demonstrated that the bHLH transcription factor Daughterless acts as an inhibitor of neural progenitor fate whose absence leads to stem cell overproliferation and tumor formation. Furthermore we showed that Daughterless exerts its action through induction of the differentiation factor Prospero whose asymmetric segregation is required for differentiation of neuroblast progeny (Yasugi et al., 2014). Identification of different interlocked molecular loops in neural stem cell lineages, which trigger lineage specification and are crucial in the generation of glial cells in the Drosophila nervous system, resulted from collaborative studies with the Giangrande lab in Strasbourg. In these studies the glial determinant GCM (Glia Cells Missing) was identified as a key control element in neuroglial stem cells which initially activates a glial cell-specific program and then autoinactivates through a sequence of transcriptional and posttranscriptional loops that involve the GCM target REPO acting on the expression and subsequently on the acetylation of the glial cell determinant (Flici et al., 2014).

Finally, in collaborative work with the lab of VijayRaghavan in Bangalore, we have identified and analysed a novel muscle stem cell population whose proliferation pattern orchestrates the building of the large flight muscles in Drosophila (Gunage et al., 2014). In this study, we have focused on the AMPs (Adult Muscle Precursors) on the wing imaginal disc, which give rise to the indirect flight muscles. Our analysis demonstrated that an initial amplification of the number of these
AMPs occurs through symmetric divisions and is followed by a switch to asymmetric divisions, in which the AMPs self-renew and generate the postmitotic myoblasts required for the formation of adult myofibers. While the initial amplification of AMPs through symmetric divisions is controlled by Notch signaling, the switch to the subsequent asymmetric division mode of AMP division additionally requires Wingless. In both cases the epidermal tissue of the wing imaginal disc acts as a stem cell niche and provides the ligands, Serrate and Wingless, for the two signaling pathways that operate in the AMPs.

In addition to our work on stem cell lineages and their molecular genetic regulation, we have continued pioneering investigations into the diversity and evolution of brain and body plan development by studying non-model system invertebrates that belong to so called lesser phyla. For this, we have studied the central nervous systems in Cyclophora, Loricifera, Kinorhyncha, and Tardigrada using current advanced imaging and 3D ultrastructural techniques as well as RNA-seq based gene expression (Cardoso-Neves et al., 2014; Cardoso-Neves et al., submitted). Furthermore, novel insights into brain evolution have been obtained in the Acoela which may have the most basal brain type of all of the Eumetazoa and which may also represent an evolutionarily basal model for investigating photosymbiosis in animals (Bailly et al., 2014).
RESEARCH GROUP HEINRICH REICHERT

Publications 2014

Sen, Sonia; Cao, Deshou; Choudhary, Ramveer; Biagini, Silvia; Wang, Jing W; Reichert, Heinrich; VijayRaghavan, K (2014). Genetic transformation of structural and functional circuitry rewire the Drosophila brain. eLife, 3, 2014; 10.7554/eLife.04407.

Bailly, Xavier; Laguerre, Laurent; Correc, Gaëlle; Dupont, Sam; Kurth, Thomas; Pfannkuchen, Anja; Entzeroth, Rolf; Probert, Ian; Vinogradov, Serge; Lechauve, Christophe; Garet-Delmas, Marie-José; Reichert, Heinrich; Hartenstein, Volker (2014). The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration. Frontiers in microbiology, 5, 498.

Flici, Hakima; Cattenoz, Pierre B; Komonyi, Orban; Laneve, Pietro; Erkosar, Berra; Karatas, Omer F; Reichert, Heinrich; Berzsenyi, Sara; Giangrande, Angela (2014). Interlocked loops trigger lineage specification and stable fates in the Drosophila nervous system. Nature communications, 5, 4484.

Sen, Sonia; Biagini, Silvia; Reichert, Heinrich; VijayRaghavan, K (2014). Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila. Biology open, 3, 711-717.

Yasugi, Tetsuo; Fischer, Anja; Jiang, Yanrui; Reichert, Heinrich; Knoblich, Juergen A (2014). A regulatory transcriptional loop controls proliferation and differentiation in Drosophila neural stem cells. PloS one, 9(5), e97034.

The overall research topic concerns the molecular mechanisms important for the function and dysfunction of synapses at the neuromuscular junction (NMJ) and between neurons in the brain (Fig. 1). Pathological changes at the NMJ, as for example seen in myasthenia gravis (Fig. 2) or muscle dystrophies (Fig. 3), impair muscle function and can be life-threatening. Our group investigates different signaling pathways important for the establishment and function of synapses. Using this knowledge, we also try to find new ways to treat pathological alterations at the NMJ and in skeletal muscle. All these projects synergize with each other as we are using the same systems to answer related questions.

The role of mTORC1 and mTORC2 in brain and skeletal muscle

Both, neurons and skeletal muscle fibers are postmitotic and thus their growth largely depends on changes in cell size and not cell number. The mammalian target of rapamycin (mTOR), which was discovered in yeast by Michael Hall and collaborators, assembles into two multiprotein complexes called mTOR complex 1 (mTORC1) and mTORC2. The two complexes are characterized by the presence of particular proteins that are necessary for their function, such as raptor (mTORC1) and rictor (mTORC2). While mTORC1 is inhibited by the immunosuppressant rapamycin, mTORC2 is not inhibited by this drug. We are investigating the role of mTORC1 and mTORC2 in brain and skeletal muscle in mice using the Cre/loxP technology. In both tissues, deletion of mTORC1 causes the organ to be smaller. In the brain, mTORC1 is essential for brain development while mTORC2 mutants survive. In the brain, mTORC2 deficiency causes a strong decrease in its size and the mice display behavioral abnormalities. Neurons show deficits in dendritic arborization and synaptic circuitry. We are currently investigating the detailed molecular mechanisms underlying these phenotypes as well as the function of mTORC1 and mTORC2 at adult synapses.

Fig. 1: Comparison of neuromuscular junctions and synapses in the brain. (A) At the NMJ, the presynaptic motor nerve, visualized by the staining with antibodies to neurofilament and synaptophysin (red), perfectly matches the postsynaptic structure, stained with an agent that binds to acetylcholine receptors. (B) At neuron-to-neuron synapses, actin (yellow) is highly enriched at postsynaptic spines on the dendrites of cultured hippocampal neurons (green). Thus, the structure of synapses is similar at the NMJ and at neuron-to-neuron synapses but there is a big difference in size. Scale bar = 10 µm.
Fig. 2: Experimentally induced myasthenia gravis causes a severe fragmentation of postsynaptic structures (green) in sternomastoid muscle so that neuromuscular transmission initiated by the presynaptic nerve terminal (red) is largely abrogated. Scale bar = 10 \(\mu \text{m} \).

Like in the brain, mTORC1 deletion in skeletal muscle results in a more severe phenotype than mTORC2 deletion. Here, mTORC2 deletion does not cause any overt phenotype whereas mTORC1 mutation affects the metabolism and function of skeletal muscle. Importantly, mTORC1 deficiency causes a severe myopathy and leads to the death of the mice at the age of 4 to 6 months. Moreover, the mice display a general wasting syndrome that is not restricted to skeletal muscle. Current projects study the mechanisms that trigger this wasting and investigate the contribution of mitochondrial biogenesis to the overall phenotype. In addition, we examine the effect of activating mTORC1 in skeletal muscle by the deletion of its inhibitor TSC1.

Copine 6, a novel calcium sensor involved in synapse structure
Changes in synaptic activity alter synaptic transmission and ultimately change neuronal network dynamics. Structural changes induced by electrical activity are often mediated by calcium-dependent processes. Initiated by gene expression studies at the NMJ, we focus on the function of Copine 6, a member of a small family of calcium-binding proteins. We have shown that Copine 6 affects spine formation and maintenance in hippocampal neurons. Copine 6 shuttles from the cytosol to postsynaptic sites upon NMDA receptor-dependent calcium influx. It binds to the Rho GTPase Rac1 and mediates its translocation to membranes upon calcium influx. These results strongly suggest that Copine 6 serves as a calcium sensor that links neuronal activity to the subsequent changes in synaptic structure. In the current projects, we investigate the function of Copine 6 and additional family members in vivo and we try to identify additional binding partners.

NMJ and disease
There are sporadic and genetic neuromuscular diseases (NMDs). Although they are often severe, they affect only a small proportion of the human population and most of the diseases are still not treatable. One of the acquired NMDs is myasthenia gravis that is caused by auto-immune antibodies directed to components of the NMJ. While most of the antibodies are directed against the acetylcholine receptor, in about 10% of the cases antibodies are directed against the receptor tyrosine kinase MuSK. Interestingly, the clinical symptoms are clearly distinct between the two subgroups. We have recently shown that the phenotypic difference between the two subtypes of myasthenia gravis can also be reiterated in a murine model of experimental autoimmune myasthenia gravis (EAMG). The symptoms in MuSK-EAMG mice are a severe kyphosis, weight loss and signs of neuromuscular hyperactivity, which are all distinct from the symptoms in EAMG induced by acetylcholine receptor antibodies. At the NMJs, MuSK-EAMG causes fragmentation and often loss of innervation (Fig. 2). Interestingly, like in human patients, the pathological changes observed at NMJs differ between muscles. Current studies aim at elucidating the molecular mechanisms that are responsible for this difference between muscles.
Another set of NMDs are muscular dystrophies, where the skeletal muscle fibers and not the NMJs are affected. Although the mutations causing muscular dystrophies are distinct, the severe loss of muscle mass due to the degeneration of muscle fibers is common to all diseases. As a consequence, muscle becomes replaced by fibrotic tissue (**Fig. 3A**). In one project we develop new methods to treat some of the muscular dystrophies in experimental mouse models. For example, we have recently shown that transgenic expression of a miniaturized form of the extracellular matrix molecule agrin (mini-agrin) can substantially compensate for the loss of laminin-211. This compensation is even more complete when cell death of muscle fibers is prevented by additionally expressing the anti-apoptotic protein Bcl2 (**Fig. 3B**) or treating mice with the anti-apoptotic agent omigapil. Such combination therapy restores the structure of the muscle to control levels (**Fig. 3C**). In current projects we test additional pharmacological agents for their potential to ameliorate the disease.
Publications 2014

Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J; Krycer, James R; Thomas, Kristen C; Oxbøll, Anne-Julie; Jordy, Andreas B; Jensen, Thomas E; Yang, Guang; Schjerling, Peter; Kiens, Bente; James, David E; Ruegg, Markus A; Richter, Erik A (2014). Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. *Molecular metabolism*, 3(6), 630-41.

Steiner, Esther; Enzmann, Gaby U; Lyck, Ruth; Lin, Shuo; Ruegg, Markus A; Kröger, Stephan; Engelhardt, Britta (2014). The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. *Cell and tissue research*, 358(2), 465-79.

Zhang, Lianjun; Tschumi, Benjamin O; Corgnac, Stéphanie; Ruegg, Markus A; Hall, Michael N; Mach, Jean-Pierre; Romero, Pedro; Donda, Alena (2014). Mammalian target of rapamycin complex 1 orchestrates invariant NKT cell differentiation and effector function. *Journal of immunology (Baltimore, Md.: 1950)*, 193(4), 1759-65.

Chou, Po-Chien; Oh, Won Jun; Wu, Chang-Chih; Moloughney, Joseph; Ruegg, Markus A; Hall, Michael N; Jacinto, Estela; Werlen, Guy (2014). Mammalian target of rapamycin complex 2 modulates αβ TCR processing and surface expression during thymocyte development. *Journal of immunology (Baltimore, Md.: 1950)*, 193(3), 1162-70.

Grahammer, Florian; Haenisch, Nora; Steinhardt, Frederic; Sander, Lukas; Roerdien, Malte; Arnold, Frederic; Cordts, Tomke; Wanner, Nicola; Reichardt, Wilfried; Kerjaschki, Donto Scho; Ruegg, Markus A; Hall, Michael N; Moulin, Pierre; Busch, Hauke; Boerries, Melanie; Walz, Gerd; Artunc, Ferruh; Huber, Tobias B (2014). mTORC1 maintains renal tubular homeostasis and is essential in response to ischemic stress. *Proceedings of the National Academy of Sciences of the United States of America*, 111(27), E2817-26.

Miloslavski, Rachel; Cohen, Elad; Avraham, Adam; Iluz, Yifat; Hayouka, Zvi; Kasir, Judith; Mudhasani, Rajini; Jones, Stephen N; Cybulski, Nadine; Ruegg, Markus A; Larsson, Ola; Gandin, Valentina; Rajakumar, Arjuna; Topisirovic, Ivan; Meyuhas, Oded (2014). Oxygen sufficiency controls TOP mTOR mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. *Journal of molecular cell biology*, 6(3), 255-66.

Hettwer, Stefan; Lin, Shuo; Kucsera, Stefan; Haubitz, Monika; Oliveri, Filippo; Fariello, Ruggero G; Ruegg, Markus A; Vrijbloed, Jan W (2014). Injection of a soluble fragment of neural agrin (NT-1654) considerably improves the muscle pathology caused by the disassembly of the neuromuscular junction. *PloS one*, 9(2), e88739.

Chen, Jianquan; Tu, Xiaolin; Esen, Emel; Joeng, Kyu Sang; Lin, Congxin; Arbeit, Jeffrey M; Ruegg, Markus A; Hall, Michael N; Ma, Liang; Long, Fanxin (2014). WNT7B promotes bone formation in part through mTORC1. *PloS genetics*, 10(1), e1004145.
The goal of research in the Scheiffele Lab is to understand molecular mechanisms underlying the formation of neuronal circuits in health and disease. Synapses are the key processing units in neuronal circuits. Therefore, we are examining mechanisms of synapse formation and synaptic re-arrangements in the central nervous system. We are exploring the trans-synaptic signals that coordinate the choice of synaptic partners, assembly of synaptic junctions and stabilization of appropriate contacts.

Coupling of postsynaptic neurotransmitter complexes to synaptic adhesion molecules

Synaptic adhesion molecules have important roles in organizing synaptic structures. In the past years we have focused on one pair of synaptic adhesion molecules called the neuroligin-neurexin complex which spans the synapse and contributes to the organization of pre- and postsynaptic membrane compartments. In cell biological studies we identified a novel mode of lateral coupling between neuroligins and neurotransmitter receptors in the postsynaptic membrane. We demonstrated that neuroligin-1 recruits NMDA-type glutamate receptors through interactions via the extracellular domains of the protein. These interactions are critical for physical retention of a pool of NMDA-receptors at glutamatergic synapses in vivo and regulate NMDA-receptor-dependent synaptic plasticity in the mouse hippocampus (Budreck et al., *PNAS*, 2013). These findings highlight the possibility that neurotransmitter receptors and adhesion molecules assemble into complexes that have structural roles at central synapses.

Molecular diversification of recognition molecules by alternative splicing

Neuronal networks in the mammalian brain represent one of the most complex examples of a highly organized biological system. The finite number of protein-coding genes in the human genome severely limits the genetic resources that can be employed for generating molecular diversity. Therefore, highly polymorphic cell surface receptor families arising from extensive alternative splicing provide attractive candidates for neuronal recognition. Neurexins are highly polymorphic synaptic cell surface receptors that are extensively modified by alternative splicing. Alternative splice variants of neurexins differ in biochemical interactions with neuroligins and other binding partners and may underlie an adhesive code at central synapses. We discovered that neurexin alternative splicing is regulated by neuronal activity. The KH-domain RNA-binding protein SAM68 binds directly to the neurexin-1 pre-mRNA and is essential for activity-dependent splicing regulation (Iijima et al., *Cell*, 2011). SAM68-like proteins (SLM1 and SLM2) exhibit highly selective expression patterns in interneuron populations in the mouse brain. These findings provide an entry point to unraveling the cell type-specific neurexin repertoires and their contribution to neuronal connectivity.

Synaptic defects in autism-spectrum disorders

Autism-spectrum disorders are amongst the most heritable neurodevelopmental disorders known to date. Human genetic studies conducted over the past 10 years have led to the identification of several candidate genes that may confer susceptibility to autism but also environmental risk factors might exist. The study of neuronal circuit alterations in autism has been most advanced for monogenic forms of syndromic autism, such as Fragile X and Rett’s Syndrome, where specific alterations in synaptic transmission have been identified. We focused our studies on a mouse model of a non-syndromic form of autism, carrying a mutation in the synaptic adhesion molecule neuroligin-3. Using a combination of electrophysiological, anatomical, and behavioral studies we identified a remarkable convergence in the synaptic pathophysiology in neuroligin-3 knock-out mice and a rodent model of Fragile X, characterized by a defect in metabotropic glutamate receptor-dependent synaptic plasticity. Importantly, the synaptic defects could be reversed by re-expression of neuroligin-3 in adult animals highlighting a substantial reversibility of the neuronal phenotypes in this model (Baudouin et al., *Science*, 2012). In ongoing studies we are now testing pharmacological interventions in transgenic mouse and rat models of autism to identify treatment strategies for the disorder.
Emergence of synaptic specificity in the pontocerebellar projection system

A key question in neural development is how axons choose their appropriate synaptic partners. We performed a detailed anatomical analysis to unravel how target specificity of ponto-cerebellar mossy fiber projections emerges during development. We observed that mossy fibers form transient synapses with Purkinje cells (an “inappropriate target”) before precise connectivity with granule cells is established. We discovered that Purkinje cell-derived bone morphogenetic protein 4 (BMP4) acts as a retrograde signal that drives the destabilization of mossy fiber contacts (Kalinovsky et al., PLoS Biology, 2011). Interestingly, the bone morphogenetic protein signaling pathway continues to be active in the adult cerebellum. Therefore, we are now examining functions of this signaling system in learning-dependent plasticity in mature cerebellar circuits.

Publications 2014

Kleijer, Kristel T E; Schmeisser, Michael J; Krueger, Dilja D; Boeckers, Tobias M; Scheiffele, Peter; Bourgeron, Thomas; Brose, Nils; Burbach, J Peter H (2014). Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology, 1.
We are employing crystallographic and biochemical/biophysical techniques to reveal the structural basis for the catalysis and regulation of c-di-GMP related proteins. Our second focus is on bacterial type IV secretion system (T4SS) effector proteins with AMP transferase activity.

Diguanylate cyclases and regulation of c-di-GMP synthesis
Recent discoveries show that a novel second messenger, c-di-GMP, is extensively used by bacteria to control multicellular behavior, such as biofilm formation. Condensation of two GTP to the dinucleotide is catalyzed by GGDEF domains that usually occur in combination with sensory and/or regulatory modules. The opposing phosphodiesterase activity is provided by EAL domains that are also regulated.

In collaboration with the Jenal group (Biozentrum) and based on crystallographic and functional studies we have studied the catalytic and regulatory mechanisms of diguanylate cyclades, the enzymes that synthesize the second messenger. It appears that the general mechanism of activation relies on signal induced dimerisation of its regulatory domains that ensures productive of the two GTP loaded catalytic GGDEF domains. Though the substrate binding site of c-di-GMP specific phosphodiesterases is completely contained with the EAL domain, the domain is active only as a homodimer. This generic property of the catalytic domain is probably utilised in the full-length proteins to control their activity, very similar to the situation in diguanylate cyclades.

Thus our results provide clues about how this class of enzymes can be regulated in a modular and universal fashion by their sensory domains. Recently we have started to elucidate the structures and binding modes of newly discovered c-di-GMP receptors. These results will add to our knowledge of complete c-di-GMP signal cascades.

Effector proteins of the type IV secretion system
Type IV secretion systems (T4SS) are utilized by many bacterial pathogens for the delivery of virulence proteins or protein-DNA complexes into their eukaryotic target cells. Together with the Dehio group (Biozentrum) we are working on a class of effector proteins that are composed of a Fic and a BID domain responsible for pathogenic action in the host cell and translocation, respectively.

Only recently, it has become apparent that the Fic domain catalyzes AMP transfer onto host target protein(s) to subvert cellular function. From a Fic crystal structure (truncated BepA from Bartonella henselae) we were able to deduce the mechanisms of catalysis and target positioning. Currently, we are investigating Fic inhibition that – depending on the protein – is caused by an α-helix that interferes with productive binding of the ATP substrate or, inter-molecularly, by complex formation with an anti-toxin. Interestingly, both inhibition mechanisms are structurally related. This knowledge may be utilized for drug development to target Fic proteins of bacterial pathogens.

Porins
Porins are integral membrane proteins from the outer membrane of Gram-negative bacteria. They allow the uptake of nutrients by passive diffusion through an intrinsic pore that extends along the axis of the transmembrane β-barrel structure. After extensive work on the general trimeric porins OmpF and OmpC from *E. coli*, we have recently determined...
the high-resolution 12-stranded β-barrel structures of NanC from *E. coli* and KdgM from *Dickeya dadantii*, representatives of a porin family that is specific for the translocation of negatively charged poly-saccharides.

Fig. 3: KdgM porin folded to a small 12-stranded hollow β-barrel.

Publications 2014

Stanger, Frédéric V; Dehio, Christoph; Schirmer, Tilman (2014). Structure of the N-Terminal Gyrase B Fragment in Complex with ADPPi Reveals Rigid-Body Motion Induced by ATP Hydrolysis. *PloS one, 9*(9), e107289.

Ozaki, Shogo; Schalch-Moser, Annina; Zumthor, Ludwig; Manfredi, Pablo; Ebbensgaard, Anna; Schirmer, Tilman; Jenal, Urs (2014). Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control. *Molecular microbiology, 94*(3), 580-94.

Hutter, C A J; Lehner, R; Wirth, Ch; Condemine, G; Peneff, C; Schirmer, T (2014). Structure of the oligogalacturonate-specific KdgM porin. *Acta crystallographica. Section D, Biological crystallography, 70*(Pt 6), 1770-8.

Sundriyal, Amit; Massa, Claudia; Samoray, Dietrich; Zehender, Fabian; Sharpe, Timothy; Jenal, Urs; Schirmer, Tilman (2014). Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP. *The Journal of Biological Chemistry, 289*, 6978-6990.
Protein structure modeling

The main interest of my group is the development of methods and algorithms for molecular modeling and simulations of three-dimensional protein structures and their interactions. One of the major limitations for using structure-based methods in biomedical research is the limited availability of experimentally determined protein structures. Prediction of the 3D structure of a protein from its amino acid sequence remains a fundamental scientific problem, and it is considered as one of the grand challenges in computational biology. Comparative or homology modeling, which uses experimentally elucidated structures of related protein family members as templates, is currently the most accurate and reliable approach to model the structure of the protein of interest. Template-based protein modeling techniques exploit the evolutionary relationship between a target protein and templates with known experimental structures, based on the observation that evolutionarily related sequences generally have similar 3D structures. The SWISS-MODEL expert system developed by our group is a fully automated web-based workbench, which greatly facilitates the process of computing of protein structure homology models.

Mean force potentials for model quality estimation

Ultimately, the quality of a model determines its usefulness for different biomedical applications such as planning mutagenesis experiments for functional analyses or studying protein-ligand interactions, e.g. in structure based drug design. The estimation of the expected quality of a predicted structural model is therefore crucial in structure prediction. Especially when the sequence identity between target and template is low, individual models may contain considerable errors. To identify such inaccuracies, scoring functions have been developed which analyze different structural features of the protein models in order to derive a quality estimate. To this end, we have introduced the composite scoring function QMEAN, which consists of four statistical potential terms and two components describing the agreement between predicted and observed secondary structure and solvent accessibility. Specific potentials for trans-membrane regions are required for the correct assessment of TM proteins such as receptors and channels. We have shown that QMEAN can not only be used to assess the quality of theoretical protein models, but also to identify experimental structures of poor quality.

CASP and CAMEO: Critical assessment of structure prediction methods

Methods for structure modeling and prediction have made substantial progress of the last decades, but still fall short in accuracy compared to high-resolution experimental structures. Retrospectively assessing the quality of a blind prediction in comparison to experimental reference structures
allows benchmarking the state-of-the-art in structure prediction and identifying areas which need further development. The Critical Assessment of Structure Prediction (CASP) experiment has for the last 20 years assessed the progress in the field of protein structure modeling based on predictions for ca. 100 blind prediction targets which are carefully evaluated by human experts. The “Continuous Model EvaluatIon” (CAMEO) project aims to provide a fully automated blind assessment for prediction servers based on weekly pre-released sequences of the Protein Data Bank PDB. CAMEO requires the development of novel scoring methods such as lDDT, which are robust against domain movements to allow for automated continuous operation without human intervention. CAMEO is currently assessing predictions of 3-dimensional structures, ligand binding sites, and model quality estimation.

Molecular modeling of Dengue virus RNA methyltransferase

Dengue fever is a viral disease that is transmitted between human hosts by Aedes mosquitoes, particularly Aedes aegyptii. According to the CDC, dengue virus is a leading cause of illness and death in the tropics and subtropics, with more than one-third of the world’s population living in areas at risk for infection, and as many as 400 million people are infected yearly. There are not yet any vaccines to prevent infection with dengue virus and the most effective protective measures are those that avoid mosquito bites. One of the viral proteins encoded in the Dengue genome, RNA methyltransferase (MTase), appears as interesting target for the development of novel inhibitors of Dengue virus as it is necessary for virus replication. In a public-private partnership with Schrodinger (New York) and the Novartis Institute for Tropical Diseases in Singapore, we have used a structure based virtual screening approach to identify novel inhibitors of Dengue virus.

In order to better understand the catalytic mechanism of the MTase, we applied a diverse set of computational methodologies as well as experimental isothermal titration calorimetry (ITC) based assays. Based on a structural model of the enzyme bound to the RNA substrate and the SAM cofactor, we establish an in-silico protocol to identify the effect of single point mutations. The protocol employs MD simulations to analyze effects on the geometric arrangement between cofactor, substrate and active site residues, an MM-GBSA approach to analyze cofactor binding free energies and mixed QM/MM simulations to estimate activation barriers. With this knowledge, we hope to facilitate the rational development of novel inhibitors against dengue fever and related diseases caused by flavivirus and we believe that our protocol gives valuable contributions for future drug resistance predictions.

Structure-guided protein engineering and in vitro evolution of enzymes

Three-dimensional models of proteins are valuable tools for the design of protein engineering and in vitro evolution experiments. In the following, some exemplar projects involving molecular modeling of protein-ligand interactions at different levels of model resolution are briefly presented.

The N-oligosaccharyltransferase PglB is used for linking polysaccharide antigens to carrier proteins in the recombinant production of conjugate vaccines.
Conjugate vaccines in which polysaccharide antigens are covalently linked to carrier proteins belong to the most effective and safest vaccines against bacterial pathogens. The current production process of conjugate vaccines is a laborious, chemical multi-step process. The discovery of N-glycosylation in bacteria allows for protein glycosylation in recombinant bacteria by expressing the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli. We are collaborating with GlycoVaxyn AG (Schlieren) and EMPA (St. Gallen) on a project funded by the KTI on structure-guided protein engineering of PglB in order to improve the efficiency of in vivo synthesis of novel and well characterized immunogenic polysaccharide/protein complexes for use in vaccines.

Other projects involve studying Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE and the implications of metal heterogeneity for evolution and antibiotic drug design (in collaboration with Marc Creus, Dept. of Chemistry), or the design of protein kinases with altered substrate specificity.

Exploring the prokaryotic c-di-GMP signaling network
Second messengers control a wide range of important cellular functions in eukaryotes and prokaryotes. Cyclic di-GMP, a ubiquitous second messenger that regulates cell surface-associated traits in bacteria, Genome sequencing data revealed several large and near-ubiquitous families of bacterial c-di-GMP related signaling proteins. In pathogenic bacteria, this switch is often accompanied by the transition from an acute to a chronic phase of infection. This makes c-di-GMP signal transduction an attractive target for novel antibiotics that interfere with bacterial persistence. We are collaborating in-house with the groups of Urs Jenal, Tilman Schirmer and Dagmar Klostermeier in a Sinergia project aiming to discover novel components of the c-di-GMP signaling network and to uncover their molecular mechanisms.

Stockinger, Heinz; Altenhoff, Adrian M; Arnold, Konstantin; Bairoch, Amos; Bastian, Frederic; Bergmann, Sven; Bougueleret, Lydie; Bucher, Philipp; Delorenzi, Mauro; Lane, Lydie; Mercier, Philippe Le; Lisacek, Frédérique; Michielin, Olivier; Palagi, Patricia M; Rougemont, Jacques; Schwede, Torsten; Mering, Christian von; Nimwegen, Erik van; Walther, Daniel; Xenarios, Ioannis; Zavolan, Mihaela; Zdobnov, Evgeny M; Zoete, Vincent; Appel, Ron D (2014). Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support. *Nucleic acids research, 42*(Web Server issue), W436-41.

Biasini, Marco; Bienert, Stefan; Waterhouse, Andrew; Arnold, Konstantin; Studer, Gabriel; Schmidt, Tobias; Kiefer, Florian; Cassarino, Tiziano Gallo; Bertoni, Martino; Bordoli, Lorenza; Schwede, Torsten (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. *Nucleic acids research, 42*(Web Server issue), W252-8.

Studer, Gabriel; Biasini, Marco; Schwede, Torsten (2014). Assessing the local structural quality of transmembrane protein models using statistical potentials (QMEANBrane). *Bioinformatics, 30*(17), i505-i511.

Kryshtafovych, Andriy; Moult, John; Bales, Patrick; Bazan, J Fernando; Biasini, Marco; Burgin, Alex; Chen, Chen; Cochran, Frank V; Craig, Timothy K; Das, Rhiiju; Fass, Deborah; Garcia-Doval, Carmela; Herzberg, Osnat; Lorimer, Donald; Luecke, Hartmut; Ma, Xiaolei; Nelson, Daniel C; van Raaij, Mark J; Rohwer, Forest; Segall, Anca; Seguritan, Victor; Zeth, Kornelius; Schwede, Torsten (2014). Challenging the state-of-the-art in protein structure prediction: Highlights of experimental target structures for the 10(th) Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10. *Proteins, 82*(S2), 26-42.
Intracellular transport in yeast and worms

Asymmetry is an inherent property of most cells. Proteins and mRNA have to be distributed at specific cellular locales to perform their proper function or to be translated in a spatially and temporally regulated manner. Although the localization of the mRNAs is restricted to the cytoplasmic face of intracellular organelles or the plasma membrane, proteins and lipids have to be localized to these organelles to provide a platform on which mRNAs and/or proteins can be recruited and restricted. In general this compartmentalization is achieved by intracellular transport through exocytic (secretory pathway) and endocytic avenues. Communication between different organelles is maintained in large part by transport vesicles that are covered with a proteinaceous coat, which polymerizes and which helps to recruit cargo proteins into the nascent transport vesicle. One class of small GTPases – the family of Arf and Sar GTPases – is essential for the generation of transport carriers, while another class – Rab GTPases – is involved in the consumption of transport carriers and seems to play an essential role in the maintenance of organellar identity.

Our research interests center around questions like how intracellular traffic contributes to cellular asymmetry and how intracellular processes are regulated by small GTPases of the Arf and Rab families. We use the unicellular yeast Saccharomyces cerevisiae and the roundworm Caenorhabditis elegans for our studies as both organisms are particularly well suited to answer the kind of questions we like to address.

The regulation of Arf family proteins

In recent times, we have investigated the role of GTPase activating proteins for Arf1p. We could show that the yeast homologues of ArfGAP1 and ArfGAP2/3, Gcs1p and Glo3p have overlapping functions in retrograde transport from the Golgi apparatus to the ER (Poon et al., 1999), and that Glo3p is an integral part of the COPI coat, which mediates this transport step (Lewis et al., 2004). The finding that ArfGAPs can induce a conformational change in SNARE proteins, which are essential components in membrane fusion processes (Rein et al., 2002, Robinson et al., 2006, Schindler and Spang, 2007), prompted us to investigate more closely the role of the ArfGAP2/3 Glo3p in transport vesicle formation. We identified a region in Glo3p, which binds to SNAREs, coatomer and cargo (BoCCS) (Schindler et al., 2009). Moreover, the C-terminal Glo3 regulatory motif, GRM appears to transmit the Arf1p nucleotide state via the GAP domain to the BoCCS region. Upon stimulation of the GTPase activity, SNAREs, coatomer and cargo could be released from the BoCCS region. We are currently trying to understand the molecular rearrangements in Glo3p and to identify interaction partners to gain further insights in the regulation of Glo3p. We also returned recently again to the analysis of the function of different Arf guanine nucleotide exchange factors (ArfGEFs) (Spang et al., 2001) and investigate their roles in Caenorhabditis elegans.

The regulation of cargo sorting and transport

In our quest to understand the life cycle of a transport vesicle, we realized that cargo, which needs to be transported in vesicles, is not just a passive bystander, but plays a more active role. Overexpression of cargo proteins with a coatomer-binding sequence (-KKXX) can rescue coatomer mutants in the –KKXX recognizing subunit (Sandmann et al., 2003). Furthermore, in the absence of the ArfGAP Glo3p, the p24 family proteins, which cycle between the ER and the Golgi apparatus, are required to bud efficiently vesicles from the Golgi (Aguilera et al., 2008). Moreover, in collaboration with Blanche Schwappach, we identified a novel bi-partite cargo recognition motif in coatomer (Michelsen et al., 2007). These results strongly indicate that cargo-coat interaction stabilize the priming complexes suggested by Springer et al. (1999) and that the formation of coat-coat interaction complexes is an essential integral part of vesicle biogenesis. We also demonstrated that Ypt1p is the Rab-GTPase responsible for anterograde and retrograde transport in the ER-Golgi shuttle as well as for Golgi maintenance in S. cerevisiae (Kamena et al., 2008). Finally, we have identified a novel trans-Golgi localized complex, exomer, which is required for the sorting and transport of specific cargo to the plasma membrane (Trautwein et al., 2006, Zanolari et al., 2010, Rockenbauch et al., 2012). We have found more cargo proteins that follow this pathway and are in the process of investigating the cargo-exomer interaction interface and decipher the transport mechanisms.
The regulation of early-to-late endosomal transport
Recently, we cloned a *C. elegans* mutant, sand-1(or552) that shows a defect in endocytosis. While initial uptake of material was normal in oocytes and coelomocytes, the transport from early-to-late endosomes seemed to be blocked (Poteryaev and Spang, 2005; Poteryaev et al., 2007). sand-1(or552) mutants had strongly enlarged early endosomes, which were positive for the small GTPase RAB-5. In contrast, RAB-7, the Rab protein normally found on late endosomes was mislocalized to the cytoplasm. This finding opened the possibility that SAND-1 was a regulator of early-to-late endosome transition. We followed up on this hypothesis and could show that in coelomocytes early-to-late endosome transport is performed through Rab conversion, and not through vesicle transport. We went on to demonstrate that SAND-1 actively interrupts the activation of RAB-5 by displacing the guanine nucleotide exchange factor of RAB-5, RABX-5 from early endosomes (Poteryaev et al., 2010). At the same time SAND-1 helps to recruit RAB-7 to endosomes to drive Rab conversion, indicating that SAND-1 acts as a critical switch in endosome maturation. These functions of SAND-1 are also conserved in mammalian cells (Poteryaev et al., 2010). We are now investigating the regulation of SAND-1 function and how multi-vesicular body formation, recycling pathways and endosome maturation are coordinated.

The regulation of mRNA metabolism and transport
This research direction was inspired by our finding that the poly A binding protein, Pab1p, associates with Arf1p and COPI vesicles in an mRNA-dependent manner and that Arf1p is required for ASH1 mRNA localization to the bud tip of yeast cells (Trautwein et al., 2004). The subsequent analysis allowed us to identify the first distal pole-localized mRNA in yeast (Kilchert and Spang, 2011) and to identify a novel pathway by which mRNAs are sequestered in processing bodies (P-bodies) for their degradation (Kilchert et al., 2010). We performed screens to identify mRNAs that are restricted to certain sites and are currently investigating the mechanism of the localization.
Publications 2014

Proteins synthesized on cytosolic ribosomes must be sorted to the specific compartment(s) in which they perform their function. Proteins of the endoplasmic reticulum (ER), the Golgi apparatus, the plasma membrane, the endosomal/lysosomal system and the cell exterior are all first targeted to the ER, translocated across the membrane or inserted into the lipid bilayer, and then distributed via the secretory pathway. Our research focuses on (1) how membrane proteins are inserted into the ER membrane and acquire a defined topology, and (2) how transport vesicles are formed at the trans-Golgi or endosomes, or in vitro from purified components and liposomes. In close collaboration with Jonas Rutishauser, we furthermore study the mechanism by which trafficking mutants of provasopressin cause dominant Diabetes insipidus.

Topogenesis of membrane proteins

Hydrophobic signal or signal-anchor sequences target newly synthesized proteins to the translocon in the ER membrane. By systematic mutation of substrate proteins, we analyze the determinants that define their orientation in the membrane and the mechanism by which topogenesis occurs. Signal hydrophobicity, flanking charges, and the position of the signal within the protein determine the mode of insertion as well as the final orientation in the membrane.

The translocon is a compact helix bundle that forms a pore for protein translocation and a lateral gate for the integration of transmembrane segments. In its empty state, the pore is closed by a lumenal plug domain and a hydrophobic constriction ring [see Fig. 1]. By random or targeted mutagenesis, we explore the contributions of the translocon to signal acceptance and orientation, as well as to transmembrane domain integration. The plug domain stabilizes the closed state of the translocon and defines the stringency of signal recognition, whereas the constriction ring defines the hydrophobicity threshold for membrane integration. In collaboration with Dominic Höpfner (Novartis), we identified novel fungal translocation inhibitors by chemogenomic profiling and selected for resistant translocon mutants to study the inhibitors’ mode of action.

Post-Golgi protein sorting

Endosome identity, morphology, and transport are regulated by rab GTPases and their effectors. We are studying the role of rabaptin-5, an effector of rab4 and rab5, that associates with rabex5, the exchange factor of rab5. Based on mutational analysis, rabaptin-5 is found to control endosome morphology without affecting transferrin transport (determined by automated microscopy) in a manner that is incompatible with the prevailing model of rab5 feed-forward loop.

Little is known about how proteins exit the trans-Golgi. We use sulfation, a trans-Golgi-specific modification, to characterize the exit pathway and kinetics to the cell surface. If necessary, proteins of interest are tagged to introduce tyrosine-sulfation sites or short sequences for the attachment of (heavily sulfated) glycosaminoglycans (GAG). In this manner, we found GAG-attachment to accelerate exit kinetics and to change the exit pathway of model proteins. Similarly, the proteoglycan form of the amyloid precursor protein exits in a manner distinct from that of GAG-free splice variants.

Sulfation is a trans-Golgi-specific modification useful to study post-Golgi traffic. To introduce sulfation sites, we have tagged proteins with short sequences for the attachment of (heavily sulfated) glycosaminoglycans (GAG). Interestingly, GAG attachment was found to affect protein traffic by inhibiting endocytosis and by accelerating trans-Golgi-to-cell surface transport both for secretory and membrane proteins. We are analyzing the mechanistic and physiological implications for proteoglycan sorting. In endocrine cells, prohormones and granins are sorted at the trans-Golgi network into dense-core secretory granules by an entirely different mechanism. We found expression of granule cargo to be sufficient to generate granule-like structures in nonendocrine cells. Deletion analysis of chromogranin A showed that the same segments that are required for granule sorting in endocrine cells produce granule-like structures in fibroblasts. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.

Fig. 1: “One ring to rule them all”: View of the interior of the closed Sec61 translocon with the plug domain in green and the constriction ring in gold (Sefer Baday).
Diabetes insipidus: a degenerative trafficking disease

Autosomal dominant neurohypophyseal Diabetes insipidus results from mutations in the precursor protein of the hormone vasopressin. Mutant precursors are retained in the ER of vasopressinergic neurons and cause cell degeneration. We discovered that pro-vasopressin mutants form disulfide-linked oligomers and develop large, fibrillar aggregations in fibroblast and neuronal cell lines (see Fig. 2). Purified mutant pro-vasopressin spontaneously formed fibrils *in vitro*. Dominant Diabetes insipidus thus belongs to the group of neurodegenerative diseases associated with fibrillar protein aggregates. We identified the vasopressin nonapeptide in the precursor sequence to be primarily responsible for aggregation in the ER, i.e. the same sequence that had been proposed to be responsible for amyloid aggregation into secretory granules at the *trans*-Golgi. The sequence physiologically important for cargo aggregation into the regulated secretory pathway thus is responsible for pathological aggregation of mutant precursors in the ER.

![Fig. 2: Pro-vasopressin aggregates in COS-1 cells.](image)

Publications 2014

Group Members

Visiting Scientist
Prof. Dr. med. Jonas Rutishauser

Postdoctoral Fellows
Dr. Simone Kälin
Dr. Deyan Mihov
Dr. Eva Raja

PhD Students
Dominik Buser
Erhan Demirci
Marco Janoschke

Master Student
Christine Käser

Administrative Assistants
Nadine Iberl
Brigitte Olufsen

Technical Associates
Cristina Baschong
Nicole Beuret
Tina Junne Bieri
The Center for Cellular Imaging and Nano Analytics (C-CINA) is studying membrane protein systems at different size and length scales with a combination of various light and electron microscopy methods. C-CINA is located in the D-BSSE building in the northern part of Basel, and is supported by the Swiss systems biology initiative SystemsX.ch.

The Stahlberg group studies biological membranes and the contained membrane proteins at several length scales and resolution levels. We use fluorescence light microscopy, and combine the obtained localization information about fluorescently labeled protein complexes or viruses with Serial Blockface Scanning Electron Microscopy (SBF-SEM), in collaboration with the Friedrich Miescher Institute. SBF-SEM can characterize the 3D structure at 20nm resolution of large specimen areas of thousands of human cells at a time, thereby extending light microscopy to higher resolution. We also employ electron tomography (ET) in a transmission electron microscope, to study small specimens like individual bacteria at even higher resolution.

To this end, C-CINA operates an FEI Titan Krios transmission electron microscope (TEM), which is one of the world's most advanced high-resolution electron microscopes for the study of biological specimens. Further instruments in C-CINA include atomic force microscopes and a scanning transmission electron microscope (STEM). The latter is used to determine the mass-distributions of biological particles, which are adsorbed to ultra-thin carbon films and freeze-dried. We apply these different methods to the same specimens, enabling correlative light and electron microscopy (CLEM). The study of biological specimens at different levels of resolution and scale allows understanding the biological system at the cellular, molecular and submolecular level.

Visual proteomics
As part of the SystemsX.ch funded project, we develop a visual proteomics platform to study the 3D structure, and size and mass distribution of the proteome of a biological cell. In collaboration with the Hierlemann group at the D-BSSE, we develop a microfluidics setup to pick individual cells, lyse and fractionate them, and cross-link the cytosolic content of a single cell, which is then stained and deposited on a TEM grid for automated 3D imaging to obtain structural information about the entirety of the proteome. Samples can also be freeze-dried and their mass analyzed by the scanning transmission electron microscope (STEM). This platform will also be combined with mass spectrometry in collaboration with the Zenobi laboratory at the ETHZ, and with the multiray optical tweezers system developed in the Vogel laboratory at the EPFL.

Membrane proteins
Membrane proteins are of central importance for health and disease. We study the high-resolution structure of membrane proteins by electron crystallography, and also characterize the arrangement of larger membrane protein complexes or the dynamic conformation of certain membrane protein systems in the biological membrane by multiresolution microscopy, including electron tomography. In collaboration with Crina Nimigean, Cornell University, NY, USA, Joe Mindell, NIH Bethesda, USA, and Horst Vogel, EPFL, Lausanne, Switzerland, we study the structure and function of gated ion channels, transporters, and receptors by single particle EM and electron crystallography.
Software development
We are also developing software for the computer evaluation of the recorded data. We distribute a software package called 2dx for the computer image processing of 2D crystal images of membrane proteins (available at http://2dx.org). This MRC-based software is now used by over 400 external users, and features a user-friendly graphical user interface, and optionally fully automatic image processing, merging, and 3D structure reconstruction. In collaboration with Niko Grigorieff, Brandeis University, MA, we have developed a maximum-likelihood module, so that high-resolution structures of membrane proteins can also be determined in the absence of large well-ordered 2D crystals. We have developed a software algorithm for projective constraint optimization, to improve the resolution of the reconstruction, also in the direction perpendicular to the viewing direction of the microscope (effectively filling the so-called missing cone). We are also developing software solutions for the structure analysis of in vivo membrane protein systems by electron tomography, by enabling user-friendly tomographic high-contrast reconstructions and tomographic molecular structure averaging.

The visual proteomics imaging platform has as its central part an automated sample staining and desalting module for micro-patterning of electron microscopy grids. (a) Schematic representation of the main components and the meander-type writing pattern. (b) Nozzle positioned above an EM grid (enlarged inset, arrow indicates the nozzle tip) on the xyz-stage. (c) TEM image of a micropatterned grid showing a section of the six 200-300-µm-wide lines of a stained sample (dark grey) diagonally to the EM grid (black) with empty carbon film in between (bright grey). Scale bar, 200 µm.

Group Members

Research Associates
Dr. Thomas Braun
Dr. Mohamed Chami
Dr. Kenneth Goldie
Dr. Markus Hilge
Dr. Shirley Müller

Postdoctoral Fellows
Dr. Tarik Khan
Dr. Julia Kowal
Dr. Philippe Ringler
Dr. Sarah Shahmoradian

PhD Students
Stefan Arnold
Benjamin Bircher
Nikhil Biyani
Venkata Prasad Dandey
Raphael Küng
Cedric Leu
Nadia Linda Opara
Sebastian Scherer
Gabriel Schweighauser
Jaroslaw Sedzicki
Kushal Sejwal

Technical Associates
Paul Baumgartner
Susanne Erpel
Ariane Fecteau-Lefebvre
Rosmarie Sütterlin

Hassaine, Ghérici; Deluz, Cédric; Grasso, Luigino; Wyss, Romain; Tol, Menno B; Hovius, Ruud; Graff, Alexandra; Stahlberg, Henning; Hal, Benjamin J; Magnone, Maria Chiara; Kolaja, Kyle; Chien, Kenneth R; Bailly, Jacques; Iacone, Roberto (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. *Nature*, 512(7514), 276-81.

Kudryashev, Misha; Aktoudianaki, Aikaterini; Dedoglou, Dimitrios; Stahlberg, Henning; Tsiositis, Georgios (2014). The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography. *Biochimica et biophysica acta*, 1837(10), 1635-42.

Kowal, Justyna Ł; Kowal, Julia K; Wu, Dalin; Stahlberg, Henning (2014). Functional surface engineering by nucleotide-modulated potassium channel insertion into polymer membranes attached to solid supports. *Biomaterials*, 35(26), 7286-94.

Moharana, Kedar; Zabeau, Lennart; Peelman, Frank; Ringler, Philippe; Stahlberg, Henning; Tavernier, Jan; Savvides, Savvas N (2014). Structural and mechanistic paradigm of leptin receptor activation revealed by complexes with wild-type and antagonist leptins. *Structure (London, England: 1993)*, 22(6), 866-77.

Scherer, Sebastian; Kowal, Julia; Chami, Mohamed; Dandey, Venkata; Arheit, Marcel; Ringler, Philippe; Stahlberg, Henning (2014). *2dx_automator*: Implementation of a semiautomatic high-throughput high-resolution cryo-electron crystallography pipeline. *Journal of structural biology*, 186(2), 302-7.
Voluntary movements are orchestrated by a complex network of central nervous system nuclei, the basal ganglia. Among these nuclei, the substantia nigra pars reticulata (SNr) is the output nucleus; receiving, integrating and transferring information to diverse specific output regions. As such the SNr represents a crucial node in the processing of motor control. This ability depends on the SNr anatomical organization, its cellular, morphological, and functional connectivity with both the input basal ganglia nuclei and other diverse output targets, as well as its synaptic plasticity ability, which allows flexibility when integrating motor signals. This implies that such a complex circuit organization relies on specific subcircuits and each of them may be responsible for a precise aspect of motor tasks.

Dopamine neuromodulation
Dopamine is a key modulator of synaptic function in the basal ganglia. It is produced by dopamine neurons of the substantia nigra pars compacta and released in different nuclei of the basal ganglia, including the substantia nigra pars reticulata. Such neuromodulation plays a major role in amplifying or decreasing the activity of specific subcircuits with the famous direct and indirect pathways, leading to coordinated locomotion. Here we aim at refining our knowledge and understanding of these two pathways considering the heterogeneity of the SNr.

Remodelling of the SNr circuitry in pathological conditions
In Parkinson’s disease, the degeneration of dopamine cells leads to a loss of dopamine neuromodulation modifying neuronal morphology and their connectivity, which impacts synaptic transmission. Such reorganization drives the typical clinical motor symptoms of the disease, specifically a difficulty in initiating movements, resting tremor, stiffness, slowing of movement and postural instability. We are using a chemically induced mouse model of Parkinson’s disease. A complete investigation of the alterations induced after dopamine depletion will provide a ground to develop in vivo optogenetic manipulations in order to reverse or compensate the behavioral motor symptoms.

This study of the SNr circuitry will offer insights into the still poorly understood physiological mechanisms linking cell-type specificity and synaptic function to basal ganglia network activity and behavior. In addition, the study of alterations/remodelling within this system in a model of Parkinson’s disease will provide detailed knowledge of the cellular basis of motor disorders, which may lead to novel therapeutic strategies.

Fig. 1: In vivo recording of an optogenetically-identified neurone.

SNR circuitry
The heterogeneity of GABAergic neurons has been well described in the cortex or in the hippocampus. However the SNR has been neglected so far. Identifying and characterizing each cell population to understand its role in the dynamic of the overall basal ganglia is crucial to assess its impact at the level of motor behavior.

Our strategy relies on the use of cell type-specific transgenic mouse lines combined with viral-mediated gene delivery (optogenetic tools). This allows the identification and manipulation of one SNR neuron subtype at a time. In vitro and in vivo electrophysiology is performed to assess the local SNR functional connectivity as well as the input and output partners. Imaging techniques (confocal and electron microscopy) are valuable tools to further confirm neuronal identity and connectivity. We are developing motor-based behavioral tests that when combined with optogenetic stimulation of SNR neuronal subpopulations provide us with powerful means to assess their specific role in a precise motor task.

Fig. 2: Chemically-induced dopamine neurone degeneration.
Publications 2014

Creed, Meaghan C; Ntamati, Niels R; Tan, Kelly R (2014). VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. *Frontiers in behavioral neuroscience*, 8, 8.
Most projects that we pursue concern the functioning and evolution of genome-wide regulatory systems in organisms ranging from bacteria to humans. The type of large-scale questions that we aim to answer include understanding how regulatory systems are integrated on a genome-wide scale, how regulatory networks are structured, how these systems handle and potentially exploit the inherent noise in gene regulatory processes, how stable cell types are defined and maintained, understanding how gene regulation evolves, and understanding under what conditions regulatory complexity can be expected to increase in evolution. Another major topic of interest in our group is to use largescale comparative genomic analysis to develop quantitative theories of genome evolution. We are particularly interested in attempting to put theories of genome evolution on a strictly empirical footing. Our group pursues both theoretical/computational and experimental approaches, and our projects can roughly be divided into “dry lab” projects that mainly concern the structure and function of gene regulatory networks in higher eukaryotes, and “wet lab” projects that mainly concern the evolution of gene regulation at the single cell level in *E. coli*.

From regulatory site constellations to dynamic gene regulatory programs

To help understand how regulatory networks function on a genomewide scale in higher eukaryotic organisms, we have been developing Bayesian probabilistic methods that combine information from highthroughput experiments (e.g. RNA-seq, ChiP-seq) with comparative genomic sequence analysis. The development of these methods is often done in collaboration with experimental groups that provide high-throughput data. Very roughly speaking, our projects concern identifying regulatory sites genome-wide in DNA and RNA, understanding how constellations of regulatory sites determine binding patterns of transcription factors and, ultimately, gene expression patterns. Finally, we aim to develop quantitative and predictive models that describe how dynamic interactions between transcriptional and post-transcriptional regulators implement gene regulatory programs that define cellular states and the transitions between them.

Regulatory site prediction

We have been developing methods for identifying regulatory sites in DNA and RNA sequences for over a decade and continue to work on improving these methods. In one current project we are working on extending the well-known position-specific weight matrix models of transcription factor (TF) binding specificity into dinucleotide weight tensor models that take arbitrary dependencies between pairs of positions into account. We are also developing completely automated procedures for analysis of ChiP-seq data, including comprehensive downstream motif analysis of binding regions. In a recent collaboration with the group of Mihaela Zavolan, we have developed a novel biophysical model or miRNA target site prediction, called MIRZA (Fig. 1). MIRZA allows prediction of miRNA target sites without resorting to ad hoc seed-based methods. In addition, application of MIRZA has shown that a substantial fraction of miRNA target sites is non-canonical, i.e. not containing a seed match. All our genome-wide regulatory site predictions are available in various formats through our SwissRegulon database and genome browser (swissregulon.unibas.ch).
Motif Activity Response Analysis

To take a first step toward modeling how constellations of regulatory sites determine genome-wide expression patterns we developed an approach, called Motif Activity Response Analysis (MARA), that models the expression of each gene as a linear function of the binding sites that occur in its promoter and unknown “motif activities” that represent the condition-dependent activities of the regulators binding to these sites. Since the original presentation of this approach, in the FANTOM4 collaboration with the RIKEN Institute in Yokohama, Japan, we have been working both on completely automating the MARA approach and on extending it in a number of ways.

One of our key current interests is to understand how the interplay between chromatin state and the actions of TFs controls gene regulation in higher eukaryotes. In the context of the SystemsX.ch CellPlasticity project, we have extended MARA to model how local constellations of regulatory sites ultimately guide the local epigenetic state of the chromatin, and successfully applied this to a number of model systems including the epithelial-to-mesenchyme transition in cancer, and T cell development. For example, in an initial proof of concept we showed that this epi-MARA approach can successfully predict TFs that are involved in the recruitment of Polycomb repression and tri-methylation of histone 3 at lysine 27 in mammals.

In another project we are developing models for the ways in which TFs and nucleosomes interact to determine genome-wide DNA accessibility and nucleosome positioning patterns. In a recent study in Saccharomyces cerevisiae we showed that, whereas the phasing of nucleosomes over gene bodies is mainly determined by the sequence binding preferences of nucleosomes, larger nucleosome-free regions in promoters are predominantly explained by competition with TF binding. Interestingly, we found that only a relatively small subset of yeastTFs that are known to interact with chromatin modifiers are the key determinants of nucleosome exclusion. We are currently working on extending this approach to modeling genome-wide DNA accessibility patterns in mammals. In a related project, we are extending our MARA approach to include the effects of distal enhancers on gene expression patterns.
ISMARA

Over the last years our group has invested a significant amount of work on completely automating our MARA approach and this has now resulted in a fully functional webserver, called ISMARA (integrated system for motif activity response analysis), available at ismara.unibas.ch, where users can perform automated motif activity analysis of their micro-array, RNA-seq, or ChIP-seq data, simply by uploading raw data (Fig. 2). The system has already been successfully used to predict key regulatory interactions in almost a dozen of recent studies in mammals, and we are working on various further improvements and extensions of the system.

This includes extension to additional model organisms such as *Drosophila* and *E. coli*, significantly extending the set of regulatory motifs that it uses, and incorporation of distal cis-regulatory modules. In addition, several of ISMARA’s recent applications involve systems that are highly medically relevant and we plan to adapt ISMARA in ways that aim to increase its medical relevance. In particular, we want to extend ISMARA to allow it to infer the effects of single nucleotide polymorphisms in predicted regulatory sites on gene expression and regulatory programs genome-wide.

Evolving synthetic *E. coli* promoters: The role of noise in the evolution of gene regulation

Since 2010 our group also includes a wet lab component where we study gene regulation at the single-cell level in *E. coli*. In order to learn more about how natural selection may have shaped the characteristics of *E. coli* promoters, we set out to compare “native” *E. coli* promoters with synthetic promoters that we evolved in the lab under carefully controlled experimental conditions, starting from entirely random sequences. To this end we use reporter constructs in which short random sequence fragments are fused upstream of GFP and these promoter sequences are then evolved using repeated rounds of selection of single cells using fluorescence-activated cell sorting (FACS), and mutation using error-prone PCR. The FACS not only allows us to precisely quantitate both the mean and noise in expression of individual promoter sequences, it also allows us to precisely control selective conditions. Moreover, using next-generation sequencing of the evolving populations, we can precisely study the effects of selection on promoter sequences.

One highly surprising finding from our studies on promoter evolution is that our synthetic promoters have noise levels that are as low as the least noisy “native” promoters from *E. coli*, and that a substantial fraction of native *E. coli* promoters have higher noise levels than any of the synthetic promoters. To explain these observations we developed a new theory for the evolution of gene regulation that calculates the “fitness” of a promoter as a function of its coupling to transcriptional regulators and the noise levels of these regulators (Fig. 3). This analy-
sis shows that, whenever existing transcription regulators can only attain limited accuracy in implementing a promoter’s desired expression levels, selection favors noisy gene regulation and may even favor the coupling of promoters to regulators whose activities are not correlated at all to the promoter’s desired expression. The theory provides a novel framework for understanding when and how gene regulation will evolve, suggesting that noise may facilitate the evolution of gene regulatory interactions.

A microfluidic framework for studying single-cell gene expression and growth dynamics

To allow us to track both the growth and expression dynamics of single cells we have been working on establishing a micro-fluidic setup in our lab that allows us to track growth of single cells and expression of fluorescent reporters in these cells using time-lapse microscopy. We are aiming to use this setup to pursue a number of projects on single-cell gene regulation in *E. coli*. First, we want to investigate the coupling between fluctuations in gene expression and the instantaneous growth rates of single cells. Second, using a collection of wild *E. coli* isolates we are investigating how single-cell gene regulatory dynamics of orthologous promoters has evolved across these strains. Finally, in the context of the SystemsX.ch StoNets project we are using this microfluidic system in combination with multi-color fluorescent reporters that measure the regulatory activity of different *E. coli* TFs to study how the joint regulatory activities of multiple TFs in *E. coli* are varying across time in single-cells. We are particularly interested in investigating to what extent interactions among regulators are used to attenuate noise, and to what extent they cause cells to stochastically diversify into phenotypically distinct states. In addition, we want to characterize which aspects of the joint gene expression state are determined by the environment, and which are guided by internal regulatory interactions.

Integrated Genotype/Phenotype evolution in *E. coli*

The availability of large numbers of complete genome sequences has led, over the last 15 years, to a revolution in our understanding of genome evolution and the identification of a number of surprising “quantitative laws” of genome evolution. However, whereas the insights gained from analysis of genomic data have been impressive, they have taught us surprisingly little about what selective pressures in the wild are driving genotype dynamics. In this project we aim to learn about selection pressures that are acting in the wild by combining information on genotype evolution in closely related bacterial strains with extensive quantitative characterization of their phenotypes. In particular, using next-generation sequencing we have determined complete genomes of 95 wild *E. coli* isolates that were all obtained from a common location at the shore of Lake Superior (Minnesota, USA). In parallel we have been characterizing the phenotypes of these strains by assessing their growth in a wide variety of conditions using a combination of automated image-analysis of cultures on agar plates, and high-throughput photospectroscopy to obtain quantitative growth kinetics. We have started developing theoretical models to describe the joint evolution of genotypes and phenotypes along the phylogeny relating the strains. We are aiming in particular to develop rigorous quantitative measures of the extent to which different phenotypic traits have been under natural selection in the history of these strains, and to infer how this has impacted their genomes. As part of this project we have also recently developed a new method, called REALPHY, for automatically inferring phylogenies from raw next-generation sequencing data.
Publications 2014

Gruber, Andreas J; Grandy, William A; Balwierz, Piotr J; Dimitrova, Yoana A; Pachkov, Mikhail; Ciaudo, Constance; van Nimwegen, Erik; Zavolan, Mihaela (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. *Nucleic acids research*, 42(14), 9313-26.

Hasegawa, Yuki; Tang, Dave; Takahashi, Naoko; Hayashizaki, Yoshihide; Forrest, Alistair R R; FANTOM Consortium; Suzuki, Harukazu (2014). CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. *Scientific reports*, 4, 5228.

Baresco, Mario; Salatino, Silvia; Kupr, Barbara; van Nimwegen, Erik; Handschin, Christoph (2014). Transcriptional Network Analysis in Muscle Reveals AP-1 as a Partner of PGC-1α in the Regulation of the Hypoxic Gene Program. *Molecular and cellular biology*, 34(16), 2996-3012.

Stockinger, Heinz; Altenhoff, Adrian M; Arnold, Konstantin; Bairoch, Amos; Bastian, Frederic; Bergmann, Sven; Bouguereau, Lydie; Bucher, Philipp; Delorenzi, Mauro; Lane, Lydie; Mercier, Philippe Le; Lisacek, Frederique; Michieli, Olivier; Palagi, Patricia M; Rougemont, Jacques; Schwede, Torsten; Mering, Christian von; Nimwegen, Erik von; Walther, Daniel; Xenarios, Ioannis; Zavolan, Mihaela; Zdobnov, Evgeny M; Zoete, Vincent; Appel, Ron D (2014). Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support. *Nucleic acids research*, 42(Web Server issue), W436-41.

Morikawa, Hiromasa; Ohkura, Naganari; Vandenbon, Alexis; Itoh, Masayoshi; Nagao-Sato, Sayaka; Kawaji, Hideya; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R R; Standley, Daron M; Date, Hiroshi; Sakaguchi, Shimon; FANTOM Consortium (2014). Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. *Proceedings of the National Academy of Sciences of the United States of America*, 111(14), 5289-94.

Arner, Erik; Forrest, Alistair R R; Ehrlund, Anna; Mejhert, Niklas; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Laurencikiene, Jurga; Rydén, Mikael; Arner, Peter; FANTOM Consortium (2014). Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells. *PloS one*, 9(3), e80274.

Andersson, Robin; Gebhard, Claudia; Miguel-Escalada, Irene; Hoof, Ilka; Bornholdt, Jette; Boyd, Mette; Chen, Yun; Zhao, Xiaobei; Schmidl, Christian; Suzuki, Takahiro; Ntini, Evgenia; Arner, Erik; Valen, Eivind; Li, Kang; Schwarzfischer, Lucia; Glatz, Dagmar; Raithel, Johanna; Lilje, Berit; Rapin, Nicolas; Bagger, Frederik Otzen; Jørgensen, Mette; Andersen, Peter Refsing; Bertin, Nicolas; Rackham, Owen; Burroughs, A Maxwell; Baillie, J Kenneth; Ishizu, Yuri; Shimizu, Yuri; Furuhata, Erina; Maeda, Shiori; Negishi, Yutaka; Mungall, Christopher J; Meehan, Terrence F; Lassmann, Timo; Itoh, Masayoshi; Kawaji, Hideya; Kondo, Naoto; Kawai, Jun; Lennartsson, Andreas; Daub, Carsten O; Heutink, Peter; Hume, David A; Jensen, Torben Heick; Suzuki, Harukazu; Roth, Volker; Heim, Markus H (2014). Pegylated IFN-α regulates hepatic gene expression through transient Jak/STAT activation. *The Journal of clinical investigation*, **124**(4), 1568-81.

Diepenbruck, Maren; Waldmeier, Lorenz; Ivanek, Robert; Berninger, Philipp; Arnold, Phil; van Nimwegen, Erik; Christofori, Gerhard (2014). Tead2 expression levels control Yap/Taz subcellular distribution, zyxin expression, and epithelial-mesenchymal transition. *Journal of cell science*, **127**(Pt 7), 1523-36.

Balwierz, Piotr J; Pachkov, Mikhail; Arnold, Phil; Gruber, Andreas J; Zavolan, Mihaela; van Nimwegen, Erik (2014). ISMARA: Automated modeling of genomic signals as a democracy of regulatory motifs. *Genome research*, **24**(5), 869-84.
For many years transcription factors held the center stage in the regulation of gene expression. This paradigm has changed with the discovery of Piwi-protein-associated small RNAs that regulate gene expression at either transcriptional or post-transcriptional level. Among these, the microRNAs (miRNAs) have initially been discovered in the worm Caenorhabditis elegans, but in recent years they have been found in the genomes of organisms as varied as viruses, plants and humans. miRNAs play essential roles in development, metabolism, immune responses, and they can either suppress or enhance specific pathogenic processes such as infections and cancer.

Combining high-throughput experimental approaches with data analysis and computational modeling, the group of Mihaela Zavolan studies post-transcriptional regulatory circuits that control cellular differentiation. MiRNAs are an important component of these circuits, being predicted to target the majority of human genes. The Zavolan group contributed to the development of Argonaute crosslinking and immunoprecipitation (CLIP)-based approaches to the isolation of miRNA targets. Computational prediction of miRNA targets remains however essential for guiding experimental approaches to the study of miRNA function. Initially, the Zavolan group used comparative genomics data to develop EIMMo, which is one of the most accurate miRNA target prediction programs currently available. More recently, in collaboration with Erik van Nimwegen, the group used their previously obtained CLIP data to infer a biophysical model of miRNA-target interaction (MIRZA). MIRZA enables accurate identification of both canonical miRNA targets, which are identified by other methods as well, and non-canonical targets, which have not been previously predicted with good accuracy. The group combines predictive modeling of miRNA binding sites with analyses of their functions. In particular, they showed that evolutionarily conserved miRNA target sites and target sites that are associated with the degradation of target miRNAs have similar properties, indicating that mRNA degradation is a common, important outcome of miRNA-target interaction. Furthermore, by modeling the combined effects of transcription factors and miRNAs on the transcriptome of various cells, the group aims to uncover regulatory cascades that are triggered by miRNAs in the context of various differentiation processes.

One of the most intriguing features of miRNA-dependent regulation is that most mRNAs that carry highly conserved miRNA target sites respond only mildly to changes in miRNA concentrations. It is therefore believed that miRNAs mostly “fine-tune” gene expression. Understanding the mechanisms behind this “fine-tuning” function is one of the current projects of the group. Availability of high-throughput data sets provides ample opportunities for testing computational models of gene expression regulation. A surprising recent finding of the group is that loading of miRNAs into the Argonaute proteins may constitute an important bottleneck that limits the speed of miRNA-dependent gene regulation. This finding has important implications, suggesting for example the necessity of active miRNA turnover in the Argonaute protein for rapid regulation of target expression.

![Fig. 1: Location of binding sites of Argonaute 2 and HuR proteins in transcripts of the p27 cell cycle regulator. The binding sites were determined by crosslinking the Argonaute 2 and HuR proteins to mRNAs with UV light, isolation and deep sequencing of RNA fragments that were bound by these proteins. The alignment shows the transcript sequence at the top, with each following track representing a unique sequenced fragment. The number of times each fragment was observed in the sample is indicated on the right of the corresponding track in the alignment. Differences between the sequenced reads and the genomic sequence are indicated by the color boxes. Crosslinking induces diagnostic T-to-C mutations.](image-url)
Generation of a mature mRNA involves many steps (transcription initiation, splicing, 3’ end processing) that can be independently regulated to give rise to multiple transcripts with different properties. In different phases of their cycle, cells can for e.g. express transcript forms that translate into the same protein, but have different susceptibilities to post-transcriptional regulation. In collaboration with Walter Keller, professor emeritus at the Biozentrum, the Zavolan group has mapped binding sites of 3’ end processing factors transcriptome-wide and related these to 3’ end processing sites that were identified in the same cell type as well as in cells in which various 3’ end processing factors underwent siRNA-mediated knockdown. With this approach, two components of the mammalian cleavage factor I (CFIm) have been found to be important for the regulation of 3’ UTR lengths. Various other factors have been recently reported to be able to globally alter the polyadenylation site usage when overexpressed or inhibited. The group is currently studying the mechanism underlying systematic changes in 3’ end processing sites that are observed in relation to specific cellular states such as proliferation.

Much of the work in the Zavolan group is collaborative, involving application of the computational tools developed in the group to various experimental data sets. Examples are the work in the context a Sinergia project entitled “Post-transcriptional regulation of germ cell apoptosis in C. elegans”, and the collaborative SystemsX.ch grants entitled “Controlling and exploiting stochasticity in gene regulatory networks” and “TargetInfectX: multi-pronged approach to pathogen infection in human cells.”
Group Members

Project Leader
Prof. em. Dr. Walter Keller

Research Associate
Dr. Sarah Güthe

Postdoctoral Fellows
Dr. Souvik Ghosh
Dr. Joao Guimaraes
Dr. Jochen Imig
Dr. Alexander Kanitz
Dr. Nitish Mittal
Dr. Josef Pasulka
Dr. Shantanu Roy
Dr. Andrzej Rzepiela

PhD Students
Jérémie Breda
Yoana Aleksandrova Dimitrova
Rafal Gumienny
Dominik Jedlinski
Hadi Jorjani
Ralf Schmidt
Afzal Pasha Syed

Administrative Assistant
Yvonne Steger

Technical Associates
Beatrice Dimitriades
Georges Martin
Arnau Vina Vilaseca

Technical Staff
Christoph Rodak

Publications 2014

Imig, Jochen; Brunschweiger, Andreas; Brümmer, Anneke; Guennewig, Boris; Mittal, Nitish; Kishore, Shivendra; Tsikrika, Panagiota; Gerber, André P; Zavolan, Mihaela; Hall, Jonathan (2014). miR-CLIP capture of a miRNA targetome uncovers a lincRNA H19-miR-106a interaction. *Nature chemical biology*, Epub ahead of print.

Gruber, Andreas R; Martin, Georges; Müller, Philipp; Schmidt, Alexander; Gruber, Andreas J; Gumienney, Rafal; Mittal, Nitish; Jayachandran, Rajesh; Pieters, Jean; Keller, Walter; van Nimwegen, Erik; Zavolan, Mihaela (2014). Global 3' UTR shortening has a limited effect on protein abundance in proliferating T cells. *Nature communications*, 5, 5465.

Schönenmann, Lars; Kühn, Uwe; Martin, Georges; Schäfer, Peter; Gruber, Andreas R; Keller, Walter; Zavolan, Mihaela; Wahle, Elmar (2014). Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33. *Genes & Development*, 28, 2381-2393.

Gruber, Andreas J; Grandy, William A; Balwierz, Piotr J; Dimitrova, Yoana A; Pachkov, Mikhail; Ciaudo, Constance; van Nimwegen, Erik; Zavolan, Mihaela (2014). Embryonic stem cell-specific microRNAs contribute to pluripotency by inhibiting regulators of multiple differentiation pathways. *Nucleic acids research*, 42(14), 9313-26.

Daubner, Gerrit M; Brümmer, Anneke; Tocchini, Cristina; Gerhardy, Stefan; Ciosk, Rafal; Zavolan, Mihaela; Allain, Frédéric H-T (2014). Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1. *Nucleic acids research, 42*(12), 8092-105.

Stockinger, Heinz; Altenhoff, Adrian M; Arnold, Konstantin; Bairoch, Amos; Bastian, Frederic; Bergmann, Sven; Bouguelleret, Lydie; Bucher, Philipp; Delorenzi, Mauro; Lane, Lydie; Mercier, Philippe Le; Lisacek, Frédérique; Michieli, Olivier; Palagi, Patricia M; Rougemont, Jacques; Schwede, Torsten; Mering, Christian von; Nimwegen, Erik van; Walther, Daniel; Xenarios, Ioannis; Zavolan, Mihaela; Zdobnov, Evgeny M; Zoete, Vincent; Appel, Ron D (2014). Fifteen years SIB Swiss Institute of Bioinformatics: life science databases, tools and support. *Nucleic acids research, 42*(Web Server issue), W436-41.

Latreille, Mathieu; Hausser, Jean; Stützer, Ina; Zhang, Quan; Hastoy, Benoit; Gargani, Sofia; Kerr-Conte, Julie; Pattou, Francois; Zavolan, Mihaela; Esguerra, Jonathan L S; Eliasson, Lena; Rülicke, Thomas; Rorsman, Patrik; Stoffel, Markus (2014). MicroRNA-7a regulates pancreatic β cell function. *The Journal of clinical investigation, 124*(6), 2722-35.

Spitzer, Jessica; Hafner, Markus; Landthaler, Markus; Ascano, Manuel; Farazi, Thalia; Wardle, Greg; Nusbaum, Jeff; Khoshid, Mohsen; Burger, Lukas; Zavolan, Mihaela; Tuschi, Thomas (2014). PAR-CLIP (Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation): a Step-By-Step Protocol to the Transcriptome-Wide Identification of Binding Sites of RNA-Binding Proteins. *Methods in enzymology, 539*, 113-61.

Balwierz, Piotr J; Pachkov, Mikhail; Arnold, Phild; Gruber, Andreas J; Zavolan, Mihaela; van Nimwegen, Erik (2014). ISMARA: Automated modeling of genomic signals as a democracy of regulatory motifs. *Genome research, 24*(5), 869-84.

The Biophysics Facility supports researchers in the use of sophisticated instrumentation to measure the interactions, reactions, stability and size of biological molecules with accuracy and precision.

A growing range of techniques has been developed to characterise the physical properties of biological macromolecules such as proteins and nucleic acids. These biophysical techniques enable us to investigate how those molecules gain and retain structure, perform reactions, and interact when they assemble into larger structures, in order to play their essential roles in living cells.

Choosing the best methods to answer your question
We identify the best combination of methods to answer each question. The facility has instruments for micro-calorimetry, circular-dichroism and fluorescence spectroscopy, surface plasmon resonance, analytical ultracentrifugation and light-scattering measurements. A few examples of typical applications are:

- Measuring the energies of macromolecular interactions
- Determining the size and shape of complexes
- Assessing the impact of mutations on protein structure and stability
- Screening small molecules libraries to identify chemical probes that bind to a specific macromolecular target

We support researchers who wish to use these techniques, from the first stages of experimental design to the final stages of data interpretation and presentation. Depending on individual requirements, we can perform experiments for users or train them to operate instruments and to collect high-quality data. We are also responsible for maintaining and improving the instruments to meet the future needs of the Biozentrum.

Publications 2014

Sundriyal, Amit; Massa, Claudia; Samoray, Dietrich; Zehender, Fabian; Sharpe, Timothy; Jenal, Urs; Schirmer, Tilman (2014). Inherent Regulation of EAL Domain-catalyzed Hydrolysis of Second Messenger Cyclic di-GMP. *The Journal of biological chemistry, 289*(10), 6978-90.
Fluorescence Activated Cell Sorting (FACS) enables a qualitative and quantitative analysis of mixtures of cells, as well as the sorting of individual particles using a flow cytometer. The application of this methodology is available to all research groups at the FACS Facility at the Biozentrum.

Fluorescence activated cell sorting (FACS) is a technology with which mixtures of cells can be analyzed, counted and separated with a special instrument, the flow cytometer. This procedure is already being routinely applied in medical diagnostics in hematology and immunology, in order to identify specific cell types in samples. Furthermore, in various research fields such as cell biology, neurobiology and infection biology FACS is being used more and more frequently and offers completely new possibilities for the analysis and purification of cells and cell organelles.

Detection of 6 subpopulations in a mixture of various Salmonella strains.

The Procedure
The analysis can be carried out on suspended cells with a size range between 0.2 and 100 micrometers, which are first stained with different fluorescent markers such as fluorescent proteins like GFP and RFP, fluorescently labeled antibodies and/or many other stains. In the flow cytometer, these particles/cells pass a laser at up to 130 km/h. The scattered light reveals the size and internal structure of the cell, while the fluorescence indicates which stain the cell contains. Cells displaying the desired characteristics are identified and counted. Finally, the fluid stream is divided into many miniscule droplets. Droplets which contain a desired cell are electrically charged and diverted by an electric field into different collecting tubes. The various separated cells can subsequently be investigated using microscopy, biochemistry and functional experiments.

The Service
All research groups at the Biozentrum are invited to use the services of the facility and receive advice for upcoming experiments. They will be supported and guided in the planning and carrying out of experiments as well as the subsequent analysis. Besides support and teaching, the service facility FACS is concerned with further development and optimization of various aspects of the FACS methodology.
During the past decade the importance of light microscopy increased tremendously in all types of biological research. In addition to the image acquisition at various types of microscopes, data handling and image analysis is becoming more and more important.

Microscopes and support for image analysis is available for all research groups of the Biozentrum
The Imaging Core Facility (IMCF) provides infrastructure for all microscopy techniques currently used in life sciences. The microscopes in the facility span the entire range from standard wide-field microscopy to confocal microscopy and (in the near future) super-resolution microscopy. The newly established facility will start to operate in autumn 2011. Initially there will be 4 point scanning confocal microscopes, 2 spinning disk confocal microscopes, and 2 wide-field microscopes available. The aim of the IMCF is not only to provide the facility users with well-maintained modern microscopy systems as well as with theoretical and technical support but also to develop and adapt new microscopy techniques and image analysis routines.

Areas of interest
Besides the microscopy service for the Biozentrum, research at the IMCF focuses on the development of (i) optimal system performance in terms of image acquisition speed and experimental flexibility thereby enabling users to do all types of experiments under optimal conditions, (ii) image analysis and automation solutions, and (iii) a data storage and database solution (in collaboration with Research IT).

Areas of activity
The IMCF supports projects requiring specific light and fluorescence microscopy setups. Preferably, the IMCF should be involved at every stage: in the planning of a new imaging/microscopy project (selection of fluorescent dyes, choice of microscopy system), during the initial phase (helping with the actual experimental setup including the soft- and hardware settings), and in image analysis and quantification (advice on usage of image analysis software such as Imaris and ImageJ). Only this allows the IMCF to provide the best support at all stages of the project and to adapt the experimental settings to the specific needs.

Specific services and resources
In detail, we will provide the following state of the art microscopy systems for research groups:

Point Scanning Confocal Microscopes
- Inverted Leica SP5 I system with resonance scanner for fast scanning (live cell imaging), multiphoton laser, and incubation chamber.
- Inverted Leica SP5 II system with resonance scanner for fast scanning (live cell imaging), high sensitivity HyD-detectors, Matrix screening software, and incubation chamber.
- Zeiss LSM 700 upright.
- Zeiss LSM 700 inverted with incubation chamber for live cell imaging.

Spinning Disk Confocal Microscopes
- PerkinElmer Ultraview with dual camera setup for high speed imaging.
- 3i Spinning Disk with highly sensitive Photometrics Evolve EM-CCD camera.

Wide-field live cell imaging systems (coming soon)
- Applied Precision DeltaVision system

Standard wide-field system
- Leica DM 6000, upright microscope with color camera for histology images

Data visualization and image analysis software
For 3D-rendering, tracking, and animations of microscopy data:
- Imaris
- Volocity
- FIJI/ImageJ
For reconstruction of 3D multi-position stacks (registration, stitching):
- XuvTools
For image analysis:
- Python/SciPy/NumPy
- Matlab
- CellProfiler
- In-house plugin or macro development for specific image analysis solutions
Steering committee
To coordinate the Imaging Core Facility activities at the Biozentrum a steering committee has been established in 2011. The steering committee is composed of five group leaders from different focal areas of the Biozentrum that are heavily involved in microscopy, and representatives from Research IT and from the Biozentrum coordination office.

Outlook
Light microscopy is developing at a tremendous pace and several new microscopy techniques have been developed to bypass Abbé’s diffraction limit of light. These new super resolution technologies are either based on structured illumination, nonlinear fluorophore responses, or on the precise localization of single molecules. Depending on the type of method used, it is now possible to improve the maximal resolution from 200nm to values of 50 to 100nm.

After careful evaluation of the different techniques, the IMCF of the Biozentrum is planning to provide super-resolution techniques at the facility. Super-resolution microscopy will open up a new dimension for research at the cellular and subcellular level. Hitherto non-resolvable small subcellular structures such as centrioles, lipid rafts, neuronal dendrite spines, nuclear pore complexes, bacterial polar complexes, and many other macromolecular structures with less than 200nm in diameter – so far exclusively accessible by electron microscopy – will be visualized by light microscopy, and eventually live cell imaging.

Fig. 2: Zeiss LSM700 inverted scanning confocal with incubation chamber for live imaging, large samples, and FRAP.

Dr. Oliver Biehlmaier
» further information

Group Members
Research Associates
Wolf Heusermann
Dr. Alexia Isabelle Loynton-Ferrand

Technical Staff
Nikolaus Ehrenfeuchter

Publications 2014
Hodel, Corinne; Niklaus, Stephanie; Heidemann, Martina; Klooster, Jan; Kamermans, Maarten; Biehlmaier, Oliver; Gesemann, Matthias; Neuhauss, Stephan C F (2014). Myosin VIIA is a marker for the cone accessory outer segment in zebrafish. *Anatomical record (Hoboken, N.J.: 2007), 297*(9), 1777-84.
Proteomics rapidly evolves from a discovery-oriented technique to a robust and sensitive quantitative tool in biological research to study changes in protein expression and protein modifications in a high-throughput manner.

Proteomics service is available for all research groups of the Biozentrum

The Proteomics Core Facility (PCF) provides infrastructure for the identification and quantification of proteins and their modifications. This includes profound expertise in phosphopeptide enrichment strategies, various platforms for protein and peptide separations, state-of-the-art mass spectrometry (MS) for discovery based MS and LC-MS/MS experiments as well as directed and targeted MS workflows for sensitive and consistent quantitative monitoring of pre-selected sets of proteins. The PCF continuously develops and adapts new sample preparation techniques, MS approaches and software tools to provide optimal analytical services for the individual research groups and their projects.

Areas of interest

Besides the analytical service for the Biozentrum, research at the PCF focuses on the development and application of (i) quantitative phosphoproteomics for tracking complex cellular phosphorylation events (Jenoe lab) and (ii) directed and targeted MS workflows for proteome-wide quantitative studies of microbes and the specific monitoring of proteins and their modifications in complex systems such as human cell lines (Schmidt lab).

Specifically, large quantitative phosphoproteome sets are currently being acquired in yeast, mammalian cells containing specific knockout/knockdown systems, and in surgical biopsies of patients undergoing various clinical treatments. Additionally, directed proteomewide studies of various human pathogens and yeast strains at multiple states are carried out, including time-resolved comparison of proteome and mRNA abundances on a molecules-per-cell level. Furthermore, quantitative datasets of selected sets of proteins involved in mitosis and neuronal synapse formation and synaptic specificity are currently acquired by targeted proteomics.

Areas of activity

The PCF supports projects requiring the identification and quantification of proteins and protein modifications. Preferably, the PCF should be involved at every stage: in the planning of new research projects, during the initial phase and while the project progresses. Only this allows the PCF to provide the best analytical tools at all stages of the project and to adapt the analytical strategies to the specific needs. Furthermore, this facilitates the interpretation of the data and its communication in a user-friendly and plain manner.

Fig. 1: Quantitative analysis of the rapamycin-sensitive phosphoproteome by SILAC. A) Two yeast cultures are metabolically labeled with normal or isotopically labeled Lysine and Arginine (heavy culture). The heavy culture is treated for 15 minutes with rapamycin. Cell lysates mixed in a ratio of 1:1 are separated by preparative SDS-PAGE, sliced into horizontal bands and proteins are digested. Phosphopeptides are enriched via IMAC and measured in an LTQOrbitrap. B) Four independent experiments yielded 972 phosphoproteins, corresponding to 2,383 unique phosphopeptides. C) Motif analysis with Motif-X of all down-regulated and upregulated phosphopeptide sequences. Motifs are ranked from top to bottom according to their score.
Global protein profiling workflow. In the first phase of the study (discovery phase), the peptide samples representing different cell states were mixed and analyzed by data-dependent acquisition (DDA) followed by directed one-dimensional LC-MS/MS. To achieve comprehensive proteome coverage, all detectable precursor ions, referred to as features, were extracted, sequenced in sequential directed LC-MS/MS analyses and identified by database searching. All identified peptide sequences were stored in a 1D-PeptideAtlas together with their precursor ion signal intensity, elution times and mass-to-charge ratio.

For each protein, mass and time coordinates from the 5 most suitable peptides (PTPs) for quantification were extracted from the PeptideAtlas and stored in an inclusion list. Additionally, a spectral library was generated from the identified spectra to improve both, the sensitivity and speed of spectral matching in the quantification phase. In this phase (scoring phase), LC-MS/MS analysis was focused on the pre-selected PTPs as well as a set of heavy labeled reference peptides that were added to each sample. This determined the concentrations of the corresponding proteins in the sample, which could be used as anchor points to translate the MS-response of each identified protein into its concentration. After spectral matching, label-free quantification was employed to extract and align identified features and monitor their corresponding protein abundances redundantly over all samples.

Specific services and resources
In detail, we provide the following state of the art MS instrumentation and methods for the research groups:

LC-MS/MS platforms
- High-resolution hybrid LTQ Orbitrap-Velos coupled online to an Easy-nLC-system (both from Thermo-Fisher Scientific) for discovery-driven workflows
- TSQ Vantage Triple Stage Quadrupole Mass Spectrometer coupled online to an Easy-nLC-system (both from Thermo-Fisher Scientific) for hypothesis-driven workflows using selected-reaction monitoring for protein quantification
- High-resolution hybrid Orbitrap-LTQ (Thermo-Fisher Scientific) coupled online to a nano 1200 LC-system (Agilent) for discovery-driven workflows

Sample preparation and fractionation instruments
- 3100 OFFGEL Fractionator for peptide separation using isoelectric focusing (Agilent)
- Capillary liquid chromatograph for peptide separation and fractionation (Agilent)

Software
- Database search tools: Mascot, Sequest and XTandem for tandem mass spectra interpretation, also in combination with the trans proteomic pipeline
- Scaffold (Proteome software) for communicating proteomics results in a user-friendly format
- Progenesis LC-MS label-free quantification software (Nonlinear Dynamics)
- MaxQuant for quantification of isotopically labeled samples
- Skyline and Pinpoint for the generation and analysis of targeted protein quantification experiments of preselected protein sets
- In-house software tools for absolute protein quantification and statistical analysis of large quantitative dataset

Methods
- Protein identification, including posttranslational modifications
- Absolute and differential protein quantification (label-free or isotope labeling-based)
- Enrichment and quantification of phosphopeptides
- Targeted protein quantification by selected reaction monitoring
Steering board
To coordinate Proteomics activities at the Biozentrum an IT steering board was established in 2010. The steering board committee is composed of four group leaders who are strongly committed to proteomics and the two co-directors of the PCF.

Outlook
With the continuing advances in MS instrumentation and methodology, proteomics is well suited to meet the requirements for biological projects on a system-wide level. Recent studies have uncovered the majority of the proteins expressed in human cell lines using state of the art MS approaches as provided by the PCF. Although this clearly marks a major leap forward, we are still far from being able to fully characterize a whole proteome with all its modifications and interactions. However, the consistent screening of microbial proteomes or specific sub-proteomes, like phosphoproteomes of selected pathways, is already possible and it is to be expected that ever-larger parts of biological systems will be accessible for MS in the near future.
Publications 2014

Clément-Ziza, Mathieu; Marsellach, Francesc X; Codlin, Sandra; Papadakis, Manos A; Reinhardt, Susanne; Rodríguez-López, María; Martin, Stuart; Marguerat, Samuel; Schmidt, Alexander; Lee, Eunhye; Workman, Christopher T; Bähler, Jürg; Beyer, Andreas (2014). Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast. *Molecular systems biology, 10*, 764.

Gruber, Andreas R; Martin, Georges; Müller, Philipp; Schmidt, Alexander; Gruber, Andreas J; Gumienny, Rafal; Mittal, Nitish; Jayachandran, Rajesh; Pieters, Jean; Keller, Walter; van Nimwegen, Erik; Zavolan, Mihaela (2014). Global 3' UTR shortening has a limited effect on protein abundance in proliferating T cells. *Nature communications, 5*, 5465.

Bauer, Manuel; Ahnén, Erik; Baron, Anna P; Glatter, Timo; Fava, Luca L; Santamaria, Anna; Nigg, Erich A; Schmidt, Alexander (2014). Evaluation of data-dependent and -independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites. *Journal of proteome research, 13*(12), 5973-88.

Claudi, Beatrice; Spröte, Petra; Chirkova, Anna; Personnic, Nicolas; Zankl, Janine; Schürmann, Nura; Schmidt, Alexander; Bumann, Dirk (2014). Phenotypic variation of salmonella in host tissues delays eradication by antimicrobial chemotherapy. *Cell, 158*(4), 722-33.

Fengos, Georgios; Schmidt, Alexander; Martin, Katrin; Fluri, Erika; Aebersold, Ruedi; Iber, Dagmar; Pertz, Olivier (2014). Spatial proteomic and phospho-proteomic organization in three prototypical cell migration modes. *Proteome science, 12*, 23.
The Research IT technology platform supports research and administration projects with increased information technology demands. Our goal is to accompany projects from their inception to a stable productive solution.

We provide and integrate information technology (IT) systems that help our institute’s members to organize and execute their work easily and efficiently. We support the Biozentrum’s groups and platforms in complex IT questions, for instance when dealing with large data sets.

Three main aspects characterize our service
• Coordination and support of large-scale IT projects that are of strategic benefit to the Biozentrum, arising from scientific and business needs.
• Operation and maintenance of production systems and services (resulting from above projects or otherwise), alone or in collaboration with internal partners, e.g. the Basel University central IT services, or the BC2 computational infrastructure for bioinformatics.
• Support of requests and questions by Biozentrum members on a daily basis (“open-door consulting”).

Areas of interest
In the past years, we have led projects that cover the whole spectrum from scientific research projects (with direct involvement in the science and the analysis of data) to core infrastructure projects (where we develop a tool or technology for widespread use in the institute). We are working with the Biozentrum’s research groups, technology platforms and administration units to address these challenges. Common to our projects is the focus on the management of information, such as:

Platforms for external and internal information exchange
• Biozentrum Intranet:
 With more than 500 members, the Biozentrum needs a central place to efficiently exchange information, for administrative and organizational purposes as well as for committees or research groups. In 2012, we took this project from requirements gathering and vendor selection through content organization into implementation and launch of our intranet. Our solution is based on an enterprise-level wiki platform, which was customized to our requirements, including specific feature and corporate look and feel.

 • Biozentrum web site:
 In time for our institute’s 40-year anniversary, our web site was due for an overhaul. Research IT led the project team, further composed of Scientific Affairs, Communications, and external contractors. The goal was to evaluate target audiences and their needs to provide an optimal platform for information access to diverse visitor groups. Our technical goal was to integrate and leverage existing data sources into a central, common content management system. Both goals were met with the launch of the first version kicking off the Biozentrum’s 40 year festivities.

Research data management and analysis
Biological data sets are growing exponentially. These data need to be efficiently stored, annotated and retrieved. We are aligning scientists’ needs and technical implementation of storage systems, in partnership with the University central IT services. In this way, we can provide for the storage of large scientific datasets with appropriate disaster recovery strategies, as well as develop processes for archiving to slower, cheaper storage media. In July 2012, a new scalable storage and archiving system was brought online, the outcome of a joint venture between the university central IT services and Research IT on behalf of our institute.

Research IT
Research IT support for the Biozentrum
Experimental data must be annotated with meta-information necessary to preserve the context in which it was generated. For specific experimental approaches, we use Imagic, OpenBIS and Omero as scientific data management systems to capture and organize annotated data. Moreover, we have launched a pilot study into the use of electronic lab notebooks.

We work closely with the computational experts embedded in the other Biozentrum technology platform, as a large part of the research data to be managed and analyzed is generated here.

Automated data processing

Increased automation in the production of large-scale data (e.g., siRNA screens) require the development of automated systems to capture, validate, and store the data, as well as trigger automated analysis on high-performance computing infrastructure. This allows biologists to perform analyses of data sets requiring significant computational power without the significant learning curve associated with setting up intensive calculations on large datasets.

The open-source iBRAIN2 software developed in our group within the SystemsX.ch SyBIT project has become the processing backbone of the InfectX project, a multi-group, multi-pathogen project lead by Prof. Christoph Dehio to elucidate key host-pathogen interactions in infection. Terabytes of images acquired from genome-wide siRNA screens are now routinely analyzed using an image processing pipeline within iBRAIN2.

Oversight

A steering board oversees the activities and strategic orientation of Research IT. It is currently composed as follows: Dr. O. Biehlmaier (Head, IMCF), T. Jelk (Head, BioPhIT), Prof. Dr. Ch. Dehio, Prof. Dr. Ch. Handschin, Prof. Dr. E. Nigg (ex officio), Dr. M. Podvinec (Head, Research IT), Marcel Scheiwiller (Head of Administration), Prof. Dr. T. Schwede (Chair), Dr. A. Schmidt (Co-director PCF).

Publications 2014

Rämö, Pauli; Drewek, Anna; Arrieumerlou, Cécile; Beerweninkel, Niko; Ben-Tekaya, Houchaima; Cardel, Bettina; Casanova, Alain; Conde-Alvarez, Raquel; Cossart, Pascale; Csúcs, Gábor; Eicher, Simone; Emmenlauer, Mario; Greber, Urs; Hardt, Wolf-Dietrich; Helenius, Ari; Kasper, Christoph; Kaufmann, Andreas; Kreibich, Saskia; Kühbacher, Andreas; Kunsts, Peter; Low, Shyan Huey; Mercer, Jason; Mudrak, Daria; Muntwiler, Simone; Pelkmans, Lucas; Pizarro-Cerdá, Javier; Podvinec, Michael; Pujadas, Eva; Rinn, Bernd; Rouilly, Vincent; Schmich, Fabian; Siebourg-Polster, Juliane; Snijder, Berend; Stebler, Michael; Studer, Gabriel; Szczurek, Ewa; Truttman, Matthias; von Mering, Christian; Vonderheit, Andreas; Yakimovich, Artur; Bühlmann, Peter; Dehio, Christoph (2014). Simultaneous analysis of large-scale RNAi screens for pathogen entry. **BMC genomics, 15**(1), 1162.
The Center for Cell Imaging and Nano Analytics (C-CINA) combines a wide range of microscopy equipment, methods and software tools to investigate biological specimens in three dimensions.

C-CINA examines biological specimens at various magnifications. Different types of light and electron microscope are used to produce three-dimensional images of proteins at different magnifications and from various aspects.

Combined use of different microscopes
Researchers in the C-CINA use the serial block face scanning electron microscope to determine the rough three-dimensional structure of biological tissues. They then examine individual cells from interesting areas of the specimen using high-resolution electron tomography. And, finally, the atomic structure of individual proteins in the cells can be reconstructed.

The microscopes function at different magnifications, ranging from hundreds of micrometers to less than a fraction of a nanometer. The key element of C-CINA’s equipment is the very high resolution microscope called “Titan”. This machine is 4.5 meters high and operated exclusively by computerized remote control.

Computer image processing gives us insight into 3D
Two-dimensional images from the various microscopes are collated into three-dimensional data by computer image processing. Just like Google Maps, the computer allows the combination of different magnifications. C-CINA also uses many different methods and types of equipment to prepare biological specimens for examination under the electron microscope.

Method development at C-CINA
C-CINA is also active in developing methods for specimen preparation, the microscopy itself, and computer-based evaluation of the images.

C-CINA is active in research into the structure of membrane protein systems and protein complexes, the development of methods for microscopy, and visual proteomics.
Ranging from storage and organization of large data volumes, to statistical data analysis and the simulation of complex systems, computer supported methods play a central role in today’s research. sciCORE provides the central infrastructure and services in the field of scientific computing for researchers at the University of Basel.

The application of modern research technologies generates increasing volumes of data that not only requires efficient storage but also meaningful analysis and interpretation. In addition to the traditional pillars of science, theory and experimentation, computer supported simulation has established itself as a third pillar. Computer simulations assist researchers in modeling complex systems to better understand their behavior. In order to successfully master these tasks, alongside an efficient and powerful IT infrastructure (high-performance computing, HPC), highly sophisticated software tools and expertise in computational sciences are required.

Scientific high-performance computing, data management, training and support

The services provided by the sciCORE Facility are available to all researchers at the University of Basel. sciCORE offers efficient technical solutions in high-performance computing and advises scientists on matters of data management and storage as well as the use of high-performance computing. More specifically, the tasks of sciCORE are:

- Provide and maintain state-of-the-art infrastructure for high-performance computing (HPC) and large-scale storage systems for big data volumes
- Provide advice to scientists on most efficient usage of HPC resources (consulting)
- Maintain an up-to-date software stack
- Host and operate HPC equipment on behalf of university departments
- Provide courses and training in the use of HPC resources
- Participate in computational projects of national scope (e.g. SystemsX.ch; PASC, CRUS P2)
- Support users in computational aspects of grant applications
- In collaboration with the SIB Swiss Institute of Bioinformatics, host and maintain several worldwide utilized bioinformatics resources and provide active scientific support for research projects in the field of life sciences.

In addition, sciCORE organizes monthly informal user meetings to inform about latest developments, updates on ongoing projects and plans for the future. sciCORE currently supports a broad spectrum of scientific projects in the fields of physics, computational chemistry, life sciences, medicine and economics.
The Life Sciences Training Facility (LSTF) is an academic facility that provides access to microarray and deep-sequencing technologies and contributes to the identification of novel molecular pathways in health and disease.

Until recently, researchers were able to study only single or just few genes related to the biological question they were interested in. Novel genome-wide methods now allow for studying all genes of an organism simultaneously and pave the way towards new discoveries related to the regulation and function of genes. The Life Sciences Training Facility (LSTF) provides researchers in Basel and throughout Switzerland a unique platform to perform their microarray and deep-sequencing experiments.

Access to latest DNA microarrays technologies
The methods of DNA microarrays allow researchers to measure the expression levels of large numbers of genes simultaneously or to genotype multiple regions of a genome. The LSTF use the Affymetrix microarray technology to conduct projects in various organisms ranging from worms to humans. These projects have led to the identification of novel genes and molecules, and confirm the notion that the genome is far more complex than originally thought. Indeed, there is a lot to be discovered and understood in the context of gene expression and gene regulation.

Novel deep-sequencing methods – fast at no-frills
Recently, the LSTF moved an important step forward and now provides support for deep sequencing. With this new technology it is possible to determine the complete sequence of an organism’s genome, or selected regions thereof, at accessible prices and fast. This method bears a huge potential for new discoveries in biological and biomedical research and can be also used for diagnostic purposes.

With both types of technologies we offer a broad panel of tools to get a complete, genome-wide picture of biological systems. The LSTF is well equipped to narrow the gap between genotype and trait.
The Center for Microscopy (ZMB) of the University of Basel provides electron microscope equipment of every description for research group projects and also plays a key role in education.

The ZMB accepts microscopy commissions from all disciplines in Life Sciences and Medicine, supporting the research groups in their projects. The ZMB also carries out its own research projects to develop and refine methods of preparation, imaging techniques, and image processing software. The most important thing is to keep up with state-of-the-art microscopy and make the necessary new methods available to research.

ZMB for teaching purposes
Another of the ZMB’s tasks is training laboratory staff and students on the electron microscopes. We also offer courses for students, so that they can acquire basic knowledge in microscopy. These courses are organized as part of the curriculum in Biology and Nanosciences. The head of the ZMB, Dr. Markus Dürenberger, has a contract with the Faculty of Philosophy and Natural Sciences, University of Basel, to run the courses.

The greatest achievements of the ZMB were put on display at the façade of the Biozentrum on the occasion of the 2nd University-night; a compound eye of a fruit fly sized 6 by 9 meters (1 million final magnification).

The Center for Microscopy of the University of Basel has been in existence since September 2001. It resulted from the merger of the Biozentrum’s Interdepartmental Electron Microscopy (IEM) unit and the Scanning Electron Microscope (SEM) Laboratory of the University of Basel, at the time when Prof. Richard Guggenheim was appointed emeritus professor. The goal of the merger was to create a central platform for services related to electron microscopy, to be provided to researchers as well as for teaching purposes.

Administration of the ZMB is integrated into the University of Basel’s Biozentrum. The president of the ZMB Users’ Board, the professor of Microscopy at the Biozentrum, is at the same time the scientific director of the ZMB. Prof. Ueli Aebi of the Biozentrum’s M.E. Müller Institute was the scientific director until 2010. Prof. Henning Stahlberg, the successor to Prof. Andreas Engel, was appointed head of the C-CINA and awarded the chair in Microscopy at the Biozentrum in 2010. He is currently the Scientific Director of the ZMB and President of the Users’ Board.
The Quantitative Genomics Facility (QGF) is a central research and service facility located in the Department of Biosystems Science and Engineering (D-BSSE) of the ETH Zürich in Basel, supported and run jointly with the University of Basel and the Friedrich Miescher Institute (FMI) for Biomedical Research. The QGF team provides technical support for next generation sequencing applications in genomics and epigenomics, including high-throughput data management and analysis.

In parallel with the human genome sequencing effort, several new technologies have emerged that allow sequencing at unprecedented throughput and low cost. These technologies are generally referred to as “Next Generation Sequencing (NGS)”. They have enabled a large diversity of applications from genome resequencing to identify variations within populations to quantification of mRNA and small RNA expression and the abundance of various epigenetic marks.

In order to take advantage of these powerful technologies, scientists from the Department of Biosystems Science and Engineering (D-BSSE), University of Basel (DBM, Biozentrum) and FMI established a NGS unit, which is housed by the D-BSSE. It currently comprises an Illumina GAIIx and a HiSeq2000 sequencing machine as well as storage and a data analysis pipeline.

Chromatin-IP combined with NGS (ChIP-Seq) to identify binding sites of proteins on DNA or specific histone modifications is one type of application frequently making use of the QGF facility. Another comes from the new field of metagenomics that emerged due to the ability to sequence DNA from diverse biological communities in ecosystems or in infectious diseases. Sequencing of hundreds of cancer genomes is yielding an unprecedented wealth of information about how this deadly disease restructures the genome. It has become evident that NGS technologies will revolutionize many areas of biology and medicine.
Directorate
Erich Nigg (Director)
Mihaela Zavolan (First Deputy)
Michael N. Hall (Second Deputy)
Manuela Holzer (Secretary to the Director)

Administrative Divisions
Marcel Scheiwiller (Head of Administration)
Roger Jenni (Head of Technical Operations & Logistics)
Evi Sonderegger (Head of Communications)

Animal Facility
Mattias Timm (Team Leader)
Alex Berglas
Urs Berglas
Jérôme Bürki
Monika Furrer
Chantal Gammenthaler
Dominique Grosshenny
Roland Geiser
Mustafa Hassan
Bekri Kadrija
Patricia Lanzi
Roger Tschudi
Manuela von Arx
Roland Weber
Renato Zedi

Communications
Evi Sonderegger (Team Leader)
Katrin Bühler
Werner Indlekofer
Annette Roulier
Heike Sacher
Ingrid Singh

Electronics Workshop
Robert Häring (Team Leader)
Simon Saner

Facility Services
Daniel Oeschger (Team Leader)
Roland Kirchhofer
Gerhard Rinia
David Schaub
Christine Widmer (Room Coordination)

Floor Manager / Assistants
Karen Bergmann (C-CINA)
Leonardo Faletti
Patric Haenni
Markus Hämmerle
Roland Kirchhofer
Marina Kuhn Rüfenacht
Andrea Löschmann
Vaclav Mandak
Rita Manohar
Markus Meier
Beat Schumacher

Finances & HR
Marcel Scheiwiller (Team Leader)
Brigitte Fehrenbach
Ursula In-Albon
Gabriele Lichtenhahn

IT Support
Thomas Jelk (Team Leader)
Jsabelle Altherr
Adrian Dellier
Daniel Fröhlich
Andreas Hefti
Stefan Maisch
Jan Welker

Labware & Media Preparation
Isabel Alameda
Bernadette Bruno
Fatma Duyar
Gina Maria Patricio Salvador Evora
Filomena Forte
Adela Garzia
Verena Heusner
Isabelle Lanz
Elisabete Leite dos Reis
Maria de Fatima Leite dos Reis
Karin Mauro
Barbara Merz
Giuseppina Schillaci
Hafiza Shams
Library
Mario Piscazzi

Mechanical Workshop
Raymond Strittmatter (Team Leader)
Antonio Catania
Sven Gfeller
Yannic Gröflin
Bernhard Leinweber
Markus Plozza
Michel Schaffhauser
Alain Steiner
Cyril von Allmen

Reception
Ursula Ackermann
Corinna Kläy

Safety
Karin Hinni

Store & Supply
Alexander Träris (Team Leader)
Luciana Das Neves Pedro
Tristan Jauslin
Claudia Roche
Gioacchino Romagnoli

Student Affairs
Susan Kaderli
Angie Klarer

Technical Services
Patrick Hueber (Team Leader)
Gilles Grotzinger
Beat Hostettler
Karim Malki