Biozentrum Annual Report 2017

Table of content

Research at a Glance 3

Focal Areas
Computational & Systems Biology 4
Growth & Development 5
Infection Biology 6
Neurobiology 7
Structural Biology & Biophysics 8

Research Groups
Prof. Jan Pieter Abrahams 9
Prof. Markus Affolter 11
Prof. Silvia Arber 14
Prof. Marek Basler 17
Prof. Attila Becskei 19
Prof. Petr Broz 21
Prof. Dirk Bumann 23
Prof. Christoph Dehio 25
Prof. Fiona Doetsch 28
Prof. Stephan Grzesiek 30
Prof. Michael N. Hall 35
Prof. Christoph Handschin 38
Prof. Sebastian Hiller 41
Prof. Sonja Hofer 44
Prof. Urs Jenal 46
Prof. Roderick Lim 49
Prof. Timm Maier 52
Prof. Thomas Mrsic-Flogel 56
Prof. Richard Neher 58
Prof. Erich A. Nigg 61
Prof. Camilo Perez 64
Prof. Jean Pieters 65
Prof. Markus Rüegg 68
Prof. Peter Scheiffele 71
Prof. Tilman Schirmer 73
Prof. Torsten Schwede 75
Prof. Anne Spang 79
Prof. Martin Spiess 82
Prof. Henning Stahlberg 85
Prof. Kelly Tan 89
Prof. Erik van Nimwegen 91
Prof. Mihaela Zavolan 96

Information on staff as on January 1, 2018

Core Facilities
Biophysics Facility (BF) 99
FACS Core Facility (FCF) 100
Imaging Core Facility (IMCF) 101
Proteomics Core Facility (PCF) 103
Research IT 106

Associated University Facilities
BioEM Lab 109
C-CINA 110
Center for Scientific Computing (sciCORE) 111
Life Sciences Training Facility 112
Quantitative Genomics Facility 113

Management, Administration & Services 114
Research at a Glance

Around 30 topics are the focus of research at the Biozentrum.

Research at the Biozentrum embraces a wide range of topics, however one main focus all the research groups share is a strong interest to understand the molecular organization of living organisms. The major areas of research are concerned with the structure and function of macromolecules, the wiring of regulatory circuits, and the general principles underlying complex biological systems and their dynamic interactions.

Currently, the research groups of the Biozentrum are grouped into five major areas of investigation: Growth & Development, Infection Biology, Neurobiology, Structural Biology & Biophysics and Computational & Systems Biology. These research areas are not strictly separated from each but rather share concepts and technologies. Furthermore, new and relevant questions often arise at the overlap between the research areas, while innovative solutions can be found arising from the expertise of each respective area.

Modern research increasingly depends on sophisticated technologies, notably in the fields of genomics, proteomics, imaging, and data analysis. To meet this challenge, the Biozentrum has established a number of so-called Technology Platforms focusing on recent developments, for example, in the fields of electron microscopy and light microscopy, proteomics, FACS (Fluorescence Activated Cell Sorting) and Research IT. The Biozentrum shares further Technology Platforms (microarray technology, next-generation sequencing, etc.) with other regional research institutes.

The Biozentrum in figures

Members of staff in 2017
Total members of staff: 517
Professors: 31
Postdoctoral researchers: 120
PhD students: 113
Scientific staff: 49
Master Students: 31
Lab staff/Technicians: 129
Administration: 44

Annual financial statement 2017
Total expenditure: CHF 62.2 million
University of Basel: 65.6%
National Science Foundation: 17.5%
Swiss Institute of Bioinformatics: 2.7%
Misc. third party grants: 14.2%
Biomedical sciences have been revolutionized by high-throughput genomics, transcriptomics, proteomics, and imaging methods. These provide parallel and detailed measurements of a vast number of molecular entities, but also demand highly performant and sophisticated data analysis methods. Extensive experimental data sets can further support the development of mathematical models, which can be used to gain further insights into how biological systems behave.

The Computational & Systems Biology research groups develop mathematical and computational approaches to study a wide range of biological systems, from individual proteins to individual bacterial cells to cell populations and animal organs. A recurrent question in these projects is how cells learn to respond and adapt to their environment, which may involve mutations in their genomes, emergence of specific circuits to regulate gene expression and other mechanisms. Many projects are carried out in the highly interdisciplinary research groups of the focal area, but many are also undertaken in collaboration with other research groups at the Biozentrum or with international consortia.

Research Groups
Prof. Attila Becskei
Prof. Richard Neher
Prof. Erik van Nimwegen
Prof. Torsten Schwede
Prof. Mihaela Zavolan

Group leaders of the Computational & Systems Biology focal area are also research group leaders at the Swiss Institute of Bioinformatics (SIB). Furthermore, they contribute to sciCORE, the competitive scientific computing environment of the University.
Growth & Development

The spatial and temporal regulation of interactions between molecules is fundamental to life. Growth & Development is dedicated to understanding how these coordinated interactions lead to cell growth, cell division and the development of living organisms.

Life is more complicated than a binary interaction of two factors and its regulation; various processes need to occur in parallel for a cell to function normally. For this reason, this research area covers a broad range of aspects from signal transduction, gene regulatory networks, cell division and cell cycle control to membrane transport, protein and mRNA transport, in a variety of experimental organisms such as bacteria, yeasts, worms, flies, fish and mammals.

This broad spectrum of experimental systems and regulatory processes makes it possible to investigate the basis of organ development, cancer and muscle function. In these endeavors, collaborative arrangements with other groups at the Biozentrum, in particular those from the research areas Structural Biology & Biophysics and Computational & Systems Biology are sought. The research groups involved in Growth & Development are also involved in initiatives within the University and beyond, such as the Basel Stem Cell Network, the Basel Signaling Alliance and SystemsX.ch.

Research Groups
Prof. Markus Affolter
Prof. Fiona Doetsch
Prof. Michael Hall
Prof. Christoph Handschin
Prof. Urs Jenal
Prof. Markus Rüegg
Prof. Peter Scheiffele
Prof. Anne Spang
Prof. Martin Spiess
The main objective of Infection Biology is to understand infectious diseases at both a cellular and molecular level in order to better control them in the future. The research groups at the Biozentrum involved in this field complement each other with their specialized skills and interests. The diversity of approaches to a common theme – the host-microbe interaction – generates a synergistic effect based on an intense exchange of scientific and technological expertise and experience.

The major research focus is on bacterial infections, in which currently nine pathogens are being studied. These represent archetypes for a range of virulence mechanisms such as intracellular replication, immune evasion, the injection of bacterial effectors into host cells, biofilm formation and persistence. The impact of this research goes beyond the field of microbial pathogenesis, addressing also basic principles in cell and molecular biology including pro-inflammatory signaling, intracellular traffic, regulation in bacteria, nanomachines, and in vivo microbial metabolism.

Several groups within Infection Biology have introduced systems biology as a new approach to investigate host-pathogen interactions and collaborate closely with their colleagues from other research areas, in particular from Structural Biology & Biophysics and Computational & Systems Biology.
Neurobiology

One of the major challenges in biology is to understand how the nervous system forms, enabling it to appropriately respond to a broad spectrum of stimuli and to have control over complex functions, such as behavior and emotions. The nervous system must be capable of storing information, integrating it into the already existing memory and be able to retrieve it again.

The mechanisms employed are still poorly understood. The way in which neurons are generated and form meaningful functional circuits is not only of interest to developmental neurobiologists but also of great significance in regard to diseases, such as Alzheimer’s disease and epilepsy, injuries to the nervous system or disturbances in body weight regulation.

The various research groups belonging to Neurobiology are concerned with neurogenesis and cell specification, the use of stem cell-based models of neural function and dysfunction, the assembly and elimination of neurons and synapses, synaptic signaling and the function of neuronal circuits.

Currently, an area of focus in this field of research is neuromuscular disorders, obesity and autism spectrum disorders – all areas involving important translational aspects, which are being further investigated in cooperation with industry. From a scientific point of view, these activities are being supported and further promoted by the Neuroscience Network Basel (NNB), a network bringing together scientists from the Biozentrum and affiliated institutions as well as partners in industry.

Visualization of spinal interneurons with direct connections to motor neurons.

Research Groups
Prof. Silvia Arber
Prof. Fiona Doetsch
Prof. Markus Rüegg
Prof. Peter Scheiffele
Prof. Kelly Tan
The understanding of biological functions depends ultimately on an accurate account of biomolecular interactions in regard to structure, physical forces and their resulting dynamics. Enormous technical advances have been made in visualizing the three-dimensional structures and in quantifying the dynamics of cellular components down to the atomic level. The research groups working in Structural Biology & Biophysics aim to apply and further develop these structural and biophysical techniques.

The structural techniques range from light microscopy, electron and scanning microscopy to X-ray crystallography and NMR spectroscopy. Biophysical methods encompass many different time-resolved spectroscopic techniques such as laser-flash spectroscopy and FRET, thermodynamic analytical methods such as ITC and DSC microcalorimetry, NMR imaging and in vivo spectroscopy. The use of rigorous combinations of these techniques enables the structure of biological matter to be determined at all magnifications; from details at the atomic level to entire cells up to small organisms.

In this way, dynamic changes can also be analyzed and quantified over a period of picoseconds or very long periods of time and the energetics and thermodynamics of biomolecular interactions can be investigated with very high precision. There is close teamwork between this branch of research and other areas of science at the Biozentrum, since many of the investigations involve projects which are carried out together with other research groups with a biochemical or biological orientation.

Research Groups
Prof. Jan Pieter Abrahams
Prof. Stephan Grzesiek
Prof. Sebastian Hiller
Prof. Roderick Lim
Prof. Timm Maier
Prof. Camilo Perez
Prof. Tilman Schirmer
Prof. Henning Stahlberg

Three-dimensional structure of the VDAC membrane protein.
The Abrahams group develops new approaches for using diffraction to determine the atomic structures of proteins and other radiation sensitive nano-size samples. We use diffraction rather than imaging, because diffraction patterns can be measured more accurately than images.

In first instance, we concentrate our efforts on the structure determination of minute nano-crystals, too small to see even with the best light microscopes. Many proteins can only form such nano-crystals, yet these crystals are too small for standard X-ray diffraction.

However, nano-crystals are well suited for electron diffraction, because electrons induce far less radiation damage compared to X-rays for the amount of information that their diffraction patterns provide. Electron nano-crystallography of proteins is an emerging technology and many of its aspects need to be developed and improved, while also several fundamental problems remain to be solved.

A nano-crystal of a protein that is only about 100 nm thick and 200 nm wide. Because this is far too small to see with a light microscope, it is visualised with an electron microscope.

The atomic structure of the protein crystal as deduced from the diffraction patterns.
To this aim, we develop novel data collection strategies, implement novel detectors for accurately and sensitively measuring electron diffraction data, we develop novel algorithms for analysing this data and (often in collaboration with others) we investigate new, unknown structures of proteins and other samples. The Abrahams group is located at C-CINA and at the Laboratory of Biomolecular Research at the Paul Scherrer Institute.

Three-dimensional electron diffraction of this protein crystal provides atomic information on its structure.

Publications 2017

The organization of body pattern in developing multi-cellular organisms is controlled to a large extent by cell-cell signaling. In the past two decades, the molecular components of a relatively small number of diverse developmental signaling cascades conserved throughout evolution have been identified. We have been studying two important developmental signals (Dpp/BMP and Fgf), and our efforts concentrated firstly on characterizing the signaling pathways in detail and deciphering their molecular logic, and secondly on understanding how these pathways control exquisite cellular behavior during development, both in Drosophila and in zebrafish. Our most intense research efforts are directed towards a profound understanding of cell behavior in branching morphogenesis, a process that leads to the ramification of epithelial structures such as seen in the lung, the kidney, many internal glands as well as the vascular system.

Cell signalling in organ formation
It has been proposed more than a century ago that the organization of body pattern might be controlled by so-called morphogen gradients. Only recently has it been possible to demonstrate that secreted proteins of the Transforming Growth Factor β (TGFβ), Wnt and Hedgehog families specify positional information by this mechanism. Drosophila Dpp is a member of the TGFβ superfamily and was the first secreted protein for which a morphogen function has been clearly demonstrated. Over the past ten years we have characterized the Dpp signaling pathway in detail, in collaboration with the group of Konrad Basler in Zurich.

Our studies provide the molecular framework for a mechanism by which the extracellular Dpp morphogen establishes a finely tuned, graded read-out of a transcriptional repressor complex including Smad proteins and the zinc-finger protein Schnurri. Targets of this repressor complex include transcriptional regulators as well as secreted proteins involved in morphogen transport. Other morphogens, which pattern the nervous system or the limb fields in higher vertebrates, might use similar mechanisms. Our current efforts are devoted to a systems biology approach and are done in the framework of the WingX project of the Swiss initiative in Systems Biology.

The experiments we concentrate on involve genome-wide target gene identification, real-time analysis of morphogen gradient readout, and computer modelling to better understand the dynamics of the Dpp morphogen system. Just recently, we have identified a novel feedback regulator of the Dpp system which controls the spreading of the Dpp molecule and might be involved in the adaptation of the morphogen gradient to tissue size. Our studies will eventually lead to a comprehensive understanding of morphogen function in tissue growth and patterning, a key issue in modern developmental biology (Fig. 1).

Cell rearrangement in organ formation
To gain insight into how signaling pathways control more complex cellular decisions during the process of organ morphogenesis, we investigate the formation of the Drosophila tracheal system, an epithelial branched network similar to the lung, the kidney or the vasculature. Tracheal development serves as a paradigm to understand how epithelial cell sheets can be transformed by cell signaling and cell-cell or cell-matrix interactions into complex three-dimensional networks, a process generally referred to as branching morphogenesis. Our approach has been to identify genes involved in the process by genetic analysis, and the characterization of relevant gene products by in vivo and in vitro analysis. In addition, we have devoted major efforts to characterize branching morphogenesis at the cellular level, using avant-garde, live imaging technology.
Over the past decade, these studies have provided a framework for understanding complex processes involved in the architectural design of developing organs, including the control and integration of cell migration and cell rearrangement via cell-cell signaling and extracellular matrix components (Fig. 2).

Studies on the development of blood vessels in higher organisms suggest strong parallels between tracheal development in insects and tube formation in the growing vasculature (see Fig. 2). Interested by this possible developmental similarity, we have initiated studies aimed at a better understanding of blood vessel development in zebrafish, one of the most promising animal systems in the study of angiogenesis available at the moment. We have indeed found that our approach to studying cell rearrangement during tracheal development provides a novel insight into how cells behave during angiogenesis when applied to zebrafish. We have recently proposed a novel model for the architecture of the first vessels formed via angiogenesis, a model which is strikingly different to the one previously described. Our studies re-define the cellular routines involved in angiogenesis, and provide the basis for all future studies in the zebrafish regarding angiogenesis. We have now strengthened our efforts to study angiogenesis using live imaging combined with novel transgenic lines and strategies (Fig. 3). Particular emphasis is devoted to the study of blood vessel fusion, a process that has not been studied in the past in vivo at the cellular level.

Interested by this possible developmental similarity, we have initiated studies aimed at a better understanding of blood vessel development in zebrafish, one of the most promising animal systems in the study of angiogenesis available at the moment. We have indeed found that our approach to studying cell rearrangement during tracheal development provides a novel insight into how cells behave during angiogenesis when applied to zebrafish. We have recently proposed a novel model for the architecture of the first vessels formed via angiogenesis, a model which is strikingly different to the one previously described. Our studies re-define the cellular routines involved in angiogenesis, and provide the basis for all future studies in the zebrafish regarding angiogenesis. We have now strengthened our efforts to study angiogenesis using live imaging combined with novel transgenic lines and strategies (Fig. 3). Particular emphasis is devoted to the study of blood vessel fusion, a process that has not been studied in the past in vivo at the cellular level.
Publications 2017

Paatero, I; Sauteur, L; Lee, M; Lagendijk, AK; Heutschi, D; Bieli, D; Hogan, BM; Affolter, M; Belting, HG (2017). Junction-based lamellipodia drive endothelial cell arrangements in vivo via a VE-cadherin/F-actin based oscillatory ratchet mechanism. bioRxiv, November 2017, 1-32.

Roubinet, Chantal; Tsankova, Anna; Pham, Tri Thanh; Monnard, Arnaud; Caussinus, Emmanuel; Affolter, Markus; Cabernard, Clemens (2017). Spatio-temporally separated cortical flows and spindle geometry establish physical asymmetry in fly neural stem cells. Nature Communications, 8(1), 1383.

Lagendijk, Anne Karine; Gomez, Guillermo A; Baek, Sungmin; Hesselson, Daniel; Hughes, William E; Paterson, Scott; Conway, Daniel E; Belting, Heinz-Georg; Affolter, Markus; Smith, Kelly A; Schwartz, Martin A; Yap, Alpha S; Hogan, Benjamin M (2017). Live imaging molecular changes junctional tension upon VE-cadherin in zebrafish. Nature Communications, 8(1), 1402.

Ochoa-Espinosa, Amanda; Harmansa, Stefan; Caussinus, Emmanuel; Affolter, Markus (2017). Myosin II is not required for Drosophila tracheal branch elongation and cell intercalation. Development, 144(16), 2961-2968.

Matsuda, Shinya; Affolter, Markus (2017). Dpp from the anterior stripe of cells is crucial for the growth of the Drosophila wing disc. eLife, 6, e22319.

Harmansa, Stefan; Alborelli, Ilaria; Bieli, Dimitri; Caussinus, Emmanuel; Affolter, Markus (2017). A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife, 6, 22549.

Nakajima, Hiroyuki; Yamamoto, Kimiko; Agarwala, Sobhika; Terai, Kenta; Fukui, Hajime; Fukuhara, Shigetomo; Ando, Koji; Miyazaki, Takahiro; Yokota, Yasuhiro; Schmelzer, Etienne; Belting, Heinz-Georg; Affolter, Markus; Lecaudey, Virginie; Mochizuki, Naoki (2017). Flow-dependent endothelial YAP regulation contributes to vessel maintenance. Developmental Cell, 40(6), 523-536.e6.

Tsachaki, Maria; Meyer, Arne; Weger, Benjamin; Kratschmar, Denise V.; Tokarz, Janina; Adamski, Jerzy; Belting, Heinz-Georg; Affolter, Markus; Dickmeis, Thomas; Odermatt, Alex (2017). Absence of 11-keto reduction of cortisone and 11-ketotestosterone in the model organism zebrafish. Journal of Endocrinology, 232(2), 323-335.
Our studies aim at identifying the principles by which neuronal circuits orchestrate accurate and timely control of motor behavior. We thrive to understand how the nervous system can produce a large repertoire of movement patterns, covering diverse motor actions from locomotion to skilled forelimb tasks. To decipher how motor circuits engage in the control of movement and contribute to the generation of diverse actions, we unravel how neuronal subpopulations are organized into specific circuits, and we study the function of identified circuits in execution and learning of motor programs.

The motor system is organized in a hierarchy of interleaved circuit modules, with three main overall components contributing to the control of movement. These are (1) circuits in the spinal cord responsible for basic patterns of motor activity, (2) supraspinal centers in the brain and brainstem providing essential regulatory input to the spinal cord, and (3) sensory feedback circuits informing the nervous system about past action and perturbations monitored in the periphery. We dissect these circuit elements from various angles to understand how precisely connected neuronal circuits lead to action diversification via activation of functionally distinct motor neurons regulating muscle contractions.

Our studies use multi-facetted approaches combining many technologies. These include state-of-the-art mouse genetics, development and implementation of viral technologies for transsynaptic circuit tracing and functional manipulation by opto- and pharmacogenetics, quantitative behavioral analysis, electrophysiology and gene expression profiling of identified neuronal subpopulations.

These approaches allow us to assess connectivity and manipulate function to determine the role of defined circuit elements in animal behavior. Furthermore, they also enable us to uncover mechanisms involved in motor circuit assembly during development, as well as circuit plasticity during motor learning and in response to disease or injury.

Circuit modules for motor control in the brainstem
Natural movement depends on the function of descending pathways from supraspinal centers to the spinal cord. This is strikingly obvious in patients with complete spinal cord injury who are unable to move muscles controlled by spinal segments below the lesion. Classical studies provide evidence that the brainstem is involved in the control of a variety of movements, but a deep understanding of the organization and connectivity of identified neuronal subpopulations in the brainstem, how they intersect with executive circuits in the spinal cord, and how they function is currently lacking. We recently investigated the organization of the bidirectional connectivity matrix between the brainstem and spinal circuits (Esposito et al., 2014; Pivetta et al., 2014).

Using virus technologies and mouse genetics, our experiments revealed highly specific connections between different brainstem nuclei and spinal neurons, providing insight into the sophisticated interactions carrying motor control commands from the brainstem to the spinal cord (Esposito et al., 2014). In behavioral experiments, we addressed the functional implications of this striking connectivity matrix, focusing on the medullary reticular formation ventral part (MdV), a brainstem nucleus with highly preferential connections to forelimb motor neurons (Fig 1). Selective ablation or silencing of
glutamatergic MdV neurons showed that these neurons are specifically required for skilled motor tasks, and in particular for the grasping phase of the single food pellet retrieval task involving forelimbs. These findings support a model in which distinct brainstem subpopulations control aspects of motor behavior through specific targeted spinal subcircuits. More generally, they provide important insight into circuit-level mechanisms essential for task-specific motor subroutines during the execution of complex motor programs.

We also revealed the connectivity matrix between neurons in the spinal cord and the brainstem (Pivetta et al., 2014). We focused our attention on spinal neurons with bifurcating connection profiles to motor neurons and the brainstem nucleus lateral reticular nucleus (LRN). We demonstrated that many different functional subtypes of spinal neurons comprise such dualconnection copy-circuit modules. Moreover, we found that axon terminals of functionally distinct spinal neurons terminate in different LRN domains, demonstrating that information converging at the level of motor neuron pools diverges by function at the level of the brainstem. We provide insight into the genetic complexity of the spinal efference copy signaling system, lending support to the notion that the reporting of ongoing spinal activity to supraspinal centers is an important prerequisite for accuracy in motor control.

Regulation of balance by circuit specificity in the vestibulo-spinal system

Reliable motor behavior depends on the ability to maintain body balance, strongly influenced by proprioceptive and vestibular systems. These two functionally complementary sensory streams guide postural adjustments during motor program execution. Whereas proprioceptive feedback enters the nervous system through sensory neurons of the peripheral nervous system, vestibular information is collected in the inner ear, computed at the level of the brainstem, and reaches the spinal cord to regulate body balance through long descending projection neurons.

We found that brainstem vestibular neurons connect to spinal motor neuron pools following a two-layered targeting logic (Basaldella et al., 2015). First, vestibular input targets preferentially extensor over flexor motor pools, a pattern established by developmental refinement in part controlled by vestibular signaling. Second, vestibular input targets slow-twitch over fast motor neuron subtypes within extensor motor pools and proprioceptors exhibit anti-correlated connectivity profiles. Genetic manipulations affecting the functionality of proprioceptive feedback circuits lead to selective cross-modal adjustments in vestibular input to motor neuron subtypes counterbalancing the imposed changes, without changing vestibular input scarcity to flexor pools (Fig 2). Thus, two major sensory systems play out cross-modal competitive signaling interactions to regulate synaptic input specificity to motor neuron subtypes.

Organization and function of motor circuits in the spinal cord

Motor neurons in the spinal cord cluster into motor pools innervating different muscles. Spinal interneurons with connections to motor pools contribute important aspects to timely muscle activation, raising the question of whether and how functionally distinct motor pools receive input from different interneuron populations. In two recent studies, we assessed the distribution patterns and identity of premotor interneurons connected to axial and limb innervating motor pools (Goetz et al., 2015), and determined how changing an axon guidance molecule code in specific subsets of spinal interneurons can miswire premotor circuits and lead to behavioral alterations (Satoh et al., 2016).

We found that motor pools innervating axial muscles receive significantly more direct input from contralateral interneurons than motor pools innervating limb muscles (Goetz et al., 2015). Moreover, upon EphA4 mutation in a defined dorsal interneuron population marked by developmental expression of the transcription factor Lbx1, we observed aberrant mid-
line wiring of dorsal interneurons (Satoh et al., 2016). Studying the motor behavior of these mutant mice, we found developmental degradation in the robustness to express a left-right alternating gait patterns. Whereas wild-type mice consistently alternate left and right limbs during walking and swimming, mutant mice alternate during walking but show synchronous movement during swimming. Together, these two studies provide insight into principles of circuit organization underlying weighted lateralization of movement related to spinal circuits.

Functional recovery after spinal cord injury depends on muscle spindle feedback circuits

Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. To assess the role that remaining external sensory inputs to spinal circuits may have in regulating recovery, we studied mice lacking functional muscle spindle feedback (Takeoka et al., 2014). Using high-resolution kinematic analysis of intact mutant mice, we found that these mice proficiently executed basic locomotor tasks but were poor in performing a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Together, our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury.

Publications 2017

Capelli, Paolo; Pivetta, Chiara; Soledad Esposito, Maria; Arber, Silvia (2017). Locomotor speed control circuits in the caudal brainstem. *Nature*, 551(7680), 373-377.

Wu, Jinjin; Capelli, Paolo; Bouvier, Julien; Goulding, Martyn; Arber, Silvia; Fortin, Gilles (2017). A V0 core neuronal circuit for inspiration. *Nature Communications*, 8(1), 544.

Secretion systems allow bacteria to transport macromolecules such as proteins into host cells during pathogenesis or bacterial cells during competition in various ecological settings. Type 6 Secretion Systems (T6SS) are encoded by a cluster of 15-20 genes that is present in at least one copy in approximately 25% of all sequenced Gram-negative bacteria. Although linked to virulence during host infection, species such as Pseudomonas, Burkholderia, Acinetobacter and Vibrio can use T6SS to kill competing bacterial cells by delivery of toxic proteins in a cell-cell contact-dependent process.

Several T6SS components are structural homologs of components of a contractile bacteriophage tail and assemble into a large structure that can be studied using whole cell electron cryo-tomography and live cell fluorescence microscopy. A combination of these techniques allows to obtain high resolution structure of T6SS in situ and to follow T6SS assembly in time. This provides an unprecedented level of understanding of this dynamic nanomachine (Basler et al., Nature 2012, Basler and Mekalanos, Science 2012). For example, live cell imaging of T6SS activity in P. aeruginosa revealed that these cells are able to sense an attack from neighboring heterologous bacteria and assemble its T6SS apparatus with a remarkable precision to specifically kill an attacking cell without damaging bystander cells (Basler et al., Cell 2013).

The goal of our research is to understand the key molecular mechanisms underlying the assembly, substrate delivery, and regulation of T6SS function. We aim to create a detailed model of the T6SS nanomachine that would allow predicting structural changes needed to engineer T6SS with new properties. Novel approaches developed to study T6SS function will be further applied to study other molecular nanomachines as well as mechanisms of various contact dependent bacterial interactions in polymicrobial communities.

High-resolution structure of T6SS

A whole T6S apparatus was recently visualized in V. cholerae by whole cell cryo electron tomography. Resolution of the structure is, however, too low to identify individual components and therefore does not provide enough information to infer a mechanism of T6SS assembly. We are solving atomic resolution structures of T6SS components and analyze their mutual interactions by genetic and biochemical methods. We are developing novel strategies to improve resolution of the T6SS structure in situ in various model organisms. We aim to identify differences in T6SS assemblies in these organisms to explain the fundamental differences in their dynamics.

Visualization of T6SS activity

Our recent success in visualizing T6SS assembly and dynamics in live cells significantly improved our understanding of T6SS function in V. cholerae and P. aeruginosa. We use novel imaging approaches to describe localization of T6SS components with high spatial and temporal resolution. We are interested in understanding the process of initiation of T6SS assembly in various model organisms to further extend our
knowledge about T6SS regulation. We are also using imaging to characterize the mode of action of T6SS effectors to better understand T6SS function.

Regulation of T6SS function

We are developing novel genetic methods to describe signaling processes involved in regulation of T6SS function on the transcriptional, translational, and post-translational level. We are also developing approaches to understand the role of T6SS in polymicrobial communities and to unravel the entire repertoire of secreted effectors.

Publications 2017

Ringel, Peter David; Hu, Di; Basler, Marek (2017). The role of type VI secretion system effectors in target cell lysis and subsequent horizontal gene transfer. *Cell reports*, 21(13), 3927-3940.

Nazarov, Sergey; Schneider, Johannes P; Brackmann, Maximilian; Goldie, Kenneth N; Stahlberg, Henning; Basler, Marek (2017). Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end. *The EMBO journal*, epub ahead of print.

Brackmann, Maximilian; Wang, Jing; Basler, Marek (2017). Type VI secretion system sheath inter-subunit interactions modulate its contraction. *EMBO reports*, epub ahead of print.

Wang, Jing; Brackmann, Maximilian; Castaño-Díez, Daniel; Kudryashev, Mikhail; Goldie, Kenneth N; Maier, Timm; Stahlberg, Henning; Basler, Marek (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex. *Nature Microbiology*, 2(11), 1507-1512.

Vettiger, Andrea; Winter, Julius; Lin, Lin; Basler, Marek (2017). The type VI secretion system sheath assembles at the end distal from the membrane anchor. *Nature Communications*, 8, 16088.

Brodmann, Maj; Dreier, Roland F.; Broz, Petr; Basler, Marek (2017). *Francisella* requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. *Nature Communications*, 8, 15853.

Prof. Dr. Marek Basler

» further information

Postdoctoral Fellows

Dr. Lin Lin
Dr. Sergey Nazarov
Dr. Peter David Ringel
Dr. Johannes Paul Schneider
Dr. Jing Wang

PhD Students

Maj Brodmann
Anna Hagmann
Andrea Vettiger

Master Students

Martina Liuzzo
Julius Winter

Administrative Assistant

Michaela Hanisch

Technical Associate

Dr. Mihai Constantin Ionescu
Cell differentiation can be achieved by specifying cell fate through deterministic instructive signals or by stochastic transitions to various epigenetic states. This form of phenotypic diversity is advantageous for adaptation and survival in changing environments, as well. For example, random variations in surface antigens increase the chance of a microorganism to escape from the immune defense. The first area of our research has focused on the understanding of epigenetic silencing. This is of paramount importance since cellular differentiation in higher eukaryotic organisms often employs silencing to package genes into the inactive heterochromatin (Fig. 1). The logic behind chromosomal epigenetic processes has been unclear. Our recent work unraveled spatial aspects in control of silencing in yeast cells (Kelemen et al. (2010) PLoS Biology). The corresponding reaction-diffusion model revealed that the same reaction mechanism that describes silencing can support both graded monostable and switch-like bistable gene expression, depending on whether recruited repressor proteins generate a single silencing gradient or two interacting gradients that flank a gene. Our experiments confirmed that chromosomal recruitment of activator and repressor proteins permits a plastic form of control; the stability of gene expression is determined by the spatial distribution of silencing nucleation sites along the chromosome. Our findings in yeast are expected to stimulate further studies to reveal the logic of chromosomal epigenetic regulation in higher eukaryotic organisms and we are starting a research project in this direction.

The second area of our research has focused on the functioning of feedback loops that arise from evolutionary gene duplication (Hsu et al. (2012) Nature Communications). During evolution, genetic networks are rewired through strengthening or weakening their interactions to develop new regulatory schemes. In the galactose network, the GAL1/GAL3 paralogues and the GAL2 gene enhance their own expression mediated by the Gal4p transcriptional activator. The wiring strength in these feedback loops is set by the number of Gal4p binding sites. Here we show using synthetic circuits that multiplying the binding sites increases the expression of a gene under the direct control of an activator, but this enhancement is not fed back in the circuit. The feedback loops are rather activated by genes that have frequent stochastic bursts and fast RNA decay rates (Fig. 2). In this way, rapid adaptation to galactose can be triggered even by weakly expressed genes. Our results indicate that nonlinear stochastic transcriptional responses enable feedback loops to function autonomously, or contrary to what is dictated by the strength of interactions enclosing the circuit.
Since the decay rate of RNAs is fast, measurements of gene expression in the high-frequency domain is necessary. Therefore, we have started measuring stochastic gene expression at the level of single molecule RNAs (Fig. 3).

Fig. 3: Single molecule detection of mRNAs by FISH. GAL3 mRNA (red), ILS1 mRNA (green).

Publications 2017

The aim of our research is to understand how host cells recognize the presence of bacterial pathogens and how they eliminate this threat. We focus on the initial contact between host and pathogen, during which host defense mainly relies on the innate immune system. An important component of innate immunity are the so-called pattern recognition receptors (PRR), which detect pathogen-derived molecules known as pathogen-associated molecular patterns (PAMPs) or host-derived danger signals (DAMPs) in the extracellular or intracellular space of host cells. The best studied of the PRRs are the membrane-associated Toll-like receptors (TLRs) and the cytoplasmic RIG-I-like and NOD-like receptors (RLRs, NLRs). Upon binding of their ligands these receptors initiate a number of signaling pathways that activate anti-microbial mechanisms and initiate the recruitment of other immune cells by the secretion of inflammatory cytokines and chemokines. Altogether these responses serve to rapidly eliminate invading pathogens and to restore tissue homeostasis.

The major area of research in the lab is the study of inflammasome complexes. Inflammasomes are multi-protein complexes that are assembled in the cytoplasm by activated PRRs of the NLR and PYHIN protein families in response to inflammatory and noxious stimuli. These complexes serve as activation platforms for inflammatory caspases (caspase-1, -11 and -12 in mice) and are classified into canonical and non-canonical inflammasomes, depending on their composition and their biological effects. Besides their role in infections, unregulated inflammasome activity plays a major role in autoinflammatory diseases and during sterile inflammation (gout, atherosclerosis, type 2 diabetes).

Assembly and regulation of canonical inflammasomes

Canonical inflammasomes are the best described group of complexes and are assembled by NLRs and PYHIN receptors. In their basic form they consist of an activated receptor, an adaptor protein called ASC and pro-caspase-1, which gets activated by dimerization and auto-proteolysis in the complex. Active caspase-1 directs the processing of certain cytokines (interleukins-1 and -18) and the induction of a specialized form of rapid cell death, called pyroptosis. Several different inflammasomes are known and are named after the receptor that initiates complex formation. These receptors recognize a wide variety of PAMPs and DAMPs, such flagellin and components of bacterial type 3 secretion systems (NLRC4/NAIP inflammasome), cytoplasmic DNA (AIM2 inflammasome) as well as membrane damage, changes in ion levels and ROS production (NLRP3 inflammasome) (Fig. 1). An essential component of all canonical inflammasomes is the adaptor ASC, which has the ability to rapidly oligomerize into one single, macromolecular complex called the ASC speck. We investigate how these complexes assemble and how inflammasomes direct host immune defenses by combining cell biology, biochemistry and real-time imaging.
Non-canonical inflammasome signaling

Recently a new inflammasome pathway was discovered which resulted in the activation of caspase-11, thus referred to as the non-canonical pathway. This inflammasome is specifically activated during infections with Gram-negative bacteria but not with Gram-positive bacteria. In addition, the non-canonical caspase-11 inflammasome was linked to mortality in models of Gram-negative sepsis, highlighting the importance of this pathway. Consistently, Lipopolysaccharide (LPS) was recognized to be a ligand that results in caspase-11 activation, but other components of this pathway still remain uncharacterized. Here, we are studying host signaling pathways that determine the activation of this pathway during infections with the model pathogen *Salmonella typhimurium* and we work on characterizing and identifying components of the non-canonical inflammasome.

Links between the interferon-response, cell-autonomous immunity and inflammasomes

Since inflammasomes are important mediators of inflammation, assembly of these complexes is very tightly regulated and often requires previous induction of other signaling pathways. We have recently found that activation of caspase-11 in response to Gram-negative bacterial infections requires the production of type-I-interferons, a class of cytokines that regulates the induction of several thousands of genes involved in various aspects of host defense. In particular interferons induce a number of genes involved in cell-autonomous immunity, i.e. processes that allow cells to fight and eliminate pathogens on a single cell level. Among the most highly induced are several families of interferon-induced GTPases, which have been shown to be required to control intracellular killing bacterial and protozoan pathogens. How these GTPases attack and kill intracellular bacteria (Fig. 2) and how this is linked to the induction of inflammasome signaling is one of the research interests of our lab.

Fig. 2: Interferon-induced GTPases (green) attack intracellular *Salmonella* (mCherry, red). Inset shows *Salmonella* that have been killed and begin to lose mCherry expression. Scale bars 10µm.

Publications 2017

Brodmann, Maj; Dreier, Roland F; Broz, Petr; Basler, Marek (2017). *Francisella* requires dynamic type VI secretion system and ClpB to deliver effectors for phagosomal escape. *Nature communications*, 8, 15853.

Prof. Dr. Petr Broz

Since October 2017 Prof. Dr. Petr Broz continues his research at the University of Lausanne.
Infectious diseases represent a major worldwide threat to human health. Novel strategies to combat infectious disease are urgently needed because of rising resistance of pathogens to antimicrobial therapy, an increasing number of immunosuppressed patients that are highly susceptible to infection, increasing travel which enhances transmission and worldwide spread of novel and re-emerging pathogens, and potential bioterrorism threats.

The substantial progress in infection biology research in the last two decades could provide a basis for novel control strategies. However, it has remained difficult to translate this extensive knowledge into effective new control strategies. One potential reason why it is so difficult to translate basic research to effective strategies for combating infectious diseases, could be the prevailing focus on the action of individual pathogen or host components. While this reductionist approach was highly successful to identify and characterize key virulence and immune factors, it can not explain the course of complex multifactorial infectious diseases involving hundreds of interacting pathogen and host factors. Our goal is therefore to integrate the vast existing knowledge and to develop appropriate methodology to analyze interacting host/pathogen networks using FACS sorting of pathogens from infected host cells and tissues, quantitative proteomics, metabolomics, molecular genetics, animal infection models, and in silico modeling.

For our research we use Salmonella as well as Shigella as model pathogens. Both pathogens cause diarrhea and Salmonella can also cause typhoid fever and nontyphoidal Salmonella (NTS) bacteremia, which together cause over a million deaths each year. In addition to their importance as human pathogens, Salmonella and Shigella are among the best-studied model pathogens.

Metabolism
A large number of Salmonella proteins with detectable expression during infection have metabolic functions. Many of these enzymes could represent promising targets for antimicrobial chemotherapy. However, we have previously shown that actually only a very small minority of enzymes is sufficiently relevant for Salmonella virulence to qualify as a potential target. To understand the differential relevance of metabolic enzymes we systematically characterize the entire Salmonella metabolic network during infection by integrating large-scale data on in vivo nutrient availability and enzyme abundance with a genome-scale in silico model that provides a consistent large-scale description of Salmonella metabolism during infection. The results revealed a surprisingly large diversity of host nutrients. However each of these nutrients was available in only minute amounts. This paradoxical situation (“starving in paradise”) has two major consequences, i) broad nutrient supplementation buffers many Salmonella metabolic defects thus limiting opportunities for antimicrobials, ii) Salmonella growth in infected mice is rather slow and nutrient-limited. Both findings reiterate the major importance of metabolism for infectious disease outcome.

Within the framework of the SystemsX.ch RTD project BattleX (coordinator: Dirk Bumann) we have recently started to analyze pathogen and host metabolism in Shigella infections.
together with five collaborating groups across Switzerland. Initial results suggest that Shigella (like Salmonella) has access to diverse host nutrients. However, in this case excess nutrient quantities that support very fast pathogen growth seem to be available. These differences likely reflect differential localization of Salmonella in a membrane-delimited vacuole vs. Shigella freely residing in the host cell cytosol with unrestricted access to cytosolic metabolites. Metabolomics data suggest that Shigella infection causes major rearrangements of metabolic fluxes in the host cells. We currently explore such host cell activities as alternative targets for controlling infection.

Analysis of pathogen subpopulations
Salmonella reside in several distinct host microenvironments within the same infected tissue. These microenvironments differ in density of host defense cell types such as neutrophils and inflammatory macrophages and likely provide substantially different conditions for Salmonella. We are developing a set of complementary tools to isolate distinct Salmonella subpopulations from various microenvironments for systemlevel analysis. Current results suggest dramatic differences in stress exposure and growth rate in Salmonella subpopulations.

Important partners
Amos Bairoch (Swiss Institute of Bioinformatics, Geneva, CH); Ivan Dikic (Goethe-Universität Frankfurt, D); Wolf-DietrichHardt (ETH Zurich, CH); Vassily Hatzimanikatis (EPFL Lausanne, CH); Ralph Schlapbach (FGC Zurich, CH); Julia Vorholt (ETH Zurich, CH)

Publications 2017

- Bumann, Dirk; Cunrath, Olivier (2017). Heterogeneity of Salmonella-host interactions in infected host tissues. Current Opinion in Microbiology, 39, 57-63.

- Wu, Aimin; Tymoszuk, Piotr; Haschka, David; Heeke, Simon; Dichtl, Stefanie; Petzer, Verena; Seifert, Markus; Hilbe, Richard; Sopper, Sieghard; Talasz, Heribert; Bumann, Dirk; Lass-Flörl, Cornelia; Theurl, Igor; Zhang, Keying; Weiss, Guenter (2017). Salmonella utilizes zinc to subvert antimicrobial host defense of macrophages via modulation of NF-κB signaling. Infection and immunity, 85(12), e00418-17.

- Schürmann, Nura; Forrer, Pascal; Casse, Olivier; Li, Jiagui; Felmy, Boas; Burgener, Anne-Valérie; Ehrenfeuchter, Nikolaus; Hardt, Wolf-Dietrich; Recher, Mike; Hess, Christoph; Tschan-Plessl, Astrid; Khanna, Nina; Bumann, Dirk (2017). Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature Microbiology, 2(4), 16268.
The aim of our studies is to gain a molecular understanding of the function of type IV secretion (T4S) systems in establishing persistent bacterial infection in the host. T4S systems are ancestrally related to bacterial conjugation systems that mediate interbacterial DNA transfer. Bacterial pathogens targeting eukaryotic host cells have adopted these supramolecular protein assemblies for the intracellular delivery of virulence factors from the bacterial cytoplasm directly into the host cell cytoplasm. Our longstanding research on the vascular tumor-inducing pathogens of the genus *Bartonella* revealed crucial roles of two distinct T4S systems, VirB and Trw, in the ability of these bacteria to colonize, invade and persist within vascular endothelial cells and erythrocytes, respectively (see Fig. 1, reviewed in Dehio, 2008, Cell. Microbiol.; and Harms and Dehio, 2012, Clin. Microbiol. Rev.). More recently, we have initiated a new project to study the role of the T4S system VirB in intracellular persistence of the closely related bacterial pathogens of the genus *Brucella* that represent the etiological agents of brucellosis – the worldwide most important bacterial zoonosis. We are using a multi-disciplinary research approach including genetics, genomics, biochemistry, structural biology, cell biology, animal experimentation and bioinformatics in order to reveal the cellular, molecular and evolutionary basis of T4S in bacterial persistence of *Bartonella* and *Brucella*. Moreover, we employ a systems biology approach to reveal the host cell signaling network underlying cell entry and intracellular persistence of these pathogens in order to define novel targets for the development of innovative anti-infectiva.

T4S systems play diverse roles in Bartonella-host interaction: They are essential for establishing persistent infection and contribute to host adaptability

A functional and comparative genomics approach allowed us to demonstrate that both the VirB and Trw T4S systems of *Bartonella* represent essential virulence factors for establishing chronic infection in mammals. Further, these virulence devices must have played major roles during evolution in facilitating adaptation of these pathogens to their specific mammalian reservoirs (Saenz et al., 2007, Nat. Genet.; Engel et al., 2011, PLoS Genetics). Genetic and cell biological analysis of Trw has shown that this T4S system mediates the host-restricted adhesion to erythrocytes (Vayssier et al., 2010). Important to note, during adoption of this dedicated role in host interaction this T4S system has lost its ancestral substrate transfer capability. In contrast, we have shown that the VirB T4S is capable of translocating DNA into endothelial target host cells in a process similar to the interbacterial DNA transfer mediated by the ancestral conjugation systems (Schroeder et al., 2011, PNAS; reviewed in Llosa et al., 2012, Trends Microbiol.). However, the physiological role of the VirB T4S system is to translocate a cocktail of *Bartonella* effector proteins (Beps) into vascular endothelial cells that subvert cellular functions to the benefit of the pathogen (Schulein et al., 2005, PNAS). An evolutionary genomics study allowed us to propose that the horizontally acquired VirB T4S system and its translocated Bep effectors facilitated adaptations to novel hosts via two parallel adaptive radiations (Engel et al., 2011, PLoS Genet.). We showed that the functional versatility and adaptive potential of the VirB T4S system evolved convergently – prior to the radiations – by consecutive rounds of lineage-specific gene duplication events followed by functional diversification. This resulted in two diverse arrays of Bep effector proteins in the two radiating lineages of *Bartonella*. Together, we established *Bartonella* as a bacterial paradigm of adaptive radiation, allowing for the first time to study the molecular and evolutionary basis of this fundamental evolutionary process for the generation of organismic diversity in bacteria.
Structure/function analysis of VirB-translocated Bep effector proteins of Bartonella

The cocktail of Bep effectors translocated by the VirB T4S system into vascular endothelial cells mediates multiple cellular effects, including anti-apoptosis, internalization of bacterial aggregates via the F-actin-dependent invasome structure and proinflammatory activation (Schulein et al., 2005, PNAS). Defining the cellular targets and molecular mechanisms of how these Beps interfere with eukaryotic signaling processes have become a focus of our recent studies. The C-terminal parts of the Beps carry the Bep intracellular delivery (BID) domain that serves as T4S signal, but has in several instances adopted additional effector function within host cells. A prominent example is the BID domain of BepA that binds adenylate cyclase to potentiate Goα-dependent cAMP production, which leads to inhibition of apoptosis in vascular endothelial cells (Pulliainen et al., 2012, PNAS). The N-terminal parts of the Beps carry diverse domains or peptide motifs considered to mediate effector functions within host cells. For instance, upon translocation the effectors BepD, BepE and BepF become tyrosine-phosphorylated on short N-terminal repeat motifs, thereby interfering with eukaryotic signal transduction processes (Selbach et al., 2009, Cell Host & Microbe). Together with the Schirmer group (Biozentrum) we study the structure/function relationship of the Fic domains that are present in the N-terminus of multiple Beps and their ancestors and mediate post-translational modifications of specific host target proteins via covalent transfer of AMP (AMPylation) (Palanivelu et al., 2011, Protein Sci.; Pieles et al., 2014, Proteomics). A particular focus of these studies is the identification of target proteins (Harms et al., 2015, Cell Rep.) and the regulation of the AMPylation activity, i.e. via binding of the Fic domain to an inhibitory protein termed antitoxin (Engel et al., 2012, Nature; Stanger et al., 2016, PNAS). Structure analysis of the BID domain serving as T4S signal in all Beps revealed a novel fold characterized by four-helix bundle topped by a hook (Stanger et al., 2016, Structure). Importantly, beyond the broadly conserved role as T4S signal, individual BID domains have also evolved secondary effector functions within host cells, such as mediating anti-apoptosis (Pulliainen et al., 2012, PNAS) or by safeguarding cells from deleterious effects caused by other Beps (Okujava et al., 2014, PLoS Patho.).

A systems biology approach to Bartonella and Brucella entry and intracellular persistence in human cells

The goal of the former InfectX (2010-2013) and present TargetInfecX (2014-2017) research and development project (RTD) of the Swisswide systems biology initiative SystemsX.ch is to comprehensively identify components of the human infectome for a set of important bacterial and viral pathogens and to develop new mathematical and computational methods with predictive power to reconstruct key signaling pathways controlling pathogen entry into human cells. We are using a systems biology approach to reconstruct host signaling processes underlying Bartonella and Brucella entry into the human model cell line HeLa that lead to the establishment of a persisting intracellular infection. For Bartonella henselae, the VirB T4S effector BepG or the combined activity of the effectors BepC/BepF was found to inhibit endocytic uptake of individual bacteria, thereby redirecting bacterial uptake to the invasome-mediated pathway facilitating the uptake of large bacterial aggregates (reviewed in Eicher and Dehio, 2012, Cell. Microbiol.). This unique cell entry process is mediated by massive F-actin rearrangements that depend on the small GTPases Rac1, the Rac1-effector Scar1, and the F-actin organizing complex Arp2/3 (Rhomberg et al., 2009, Cell Microbiol.; Truttmann et al., 2011, Cell Microbiol.) and bi-directional signaling via the integrin pathway (Truttmann et al., 2011, J. Cell Sci.). The uptake process triggered by Brucella abortus is less well defined but considered to depend on lipid rafts and the small GTPase Cdc42. Genome-wide RNA interference screens and related modeling approaches currently performed on the basis of high-content fluorescence microscopy assays for pathogen entry and intracellular replication should facilitate the comprehensive identification of the human infectomes involved in establishing persistent intracellular infection of these pathogens as a first step towards the identification of human targets suitable for the development of a new class of anti-infectives that interfere with the function of host proteins essential for pathogen infection.
Prof. Dr. Christoph Dehio
» further information

Research Associates
Dr. Simone Eicher
Dr. Anne-Cécile Hiebel
Dr. Isabel Sorg

Postdoctoral Fellows
Dr. Nikolaus Dietz born Schmitz
Dr. Maxime Quebatte
Dr. Jaroslaw Sedzicki
Dr. Sabrina Siamer
Dr. Alexander Wagner

PhD Students
Clement Barbier
Katja Fromm
Markus Huber
Simon Marlaire
Selma Mode
Lena Siewert
Stefanie Tamegger

Master Students
Jenifer Sen
Carsten Eric Maximilian Seyfert
Kathrin Strack
Colin Tittes

Administrative Assistant
Claudia Erbel-Sieler

Technical Associates
Jonas Körner
Claudia Mistl
Dr. Therese Tschon

Publications 2017

Harms, Alexander; Segers, Francisca H. I. D.; Quebatte, Maxime; Mistl, Claudia; Manfredi, Pablo; Körner, Jonas; Chomel, Bruno B.; Kosoy, Michael; Maruyama, Soichi; Engel, Philipp; Dehio, Christoph (2017). Evolutionary dynamics of pathoadaptation revealed by three independent acquisitions of the VirB/D4 type IV secretion system in Bartonella. Genome biology and evolution, 9(3), 761-776.

Riba, Andrea; Emmenlauer, Mario; Chen, Amy; Sigoillot, Frederic; Cong, Feng; Dehio, Christoph; Jenkins, Jeremy; Zavolan, Mihaela (2017). Explicit modeling of siRNA-dependent on- and off-target repression improves the interpretation of screening results. Cell Systems, 4(2), 182-193.

Stanger, Frédéric V.; de Beer, Tjaart A. P.; Dranow, David M.; Schirmer, Tilman; Phan, Isabelle; Dehio, Christoph (2017). The BID domain of type IV secretion substrates.
Neural stem cells continuously generate new neurons in restricted areas of the adult mammalian brain. Adult stem cells reside in specialized niches that support their lifelong capacity for self-renewal and differentiation. Intriguingly, adult neural stem cells exhibit features of glial cells, raising the possibility that glial cells elsewhere in the brain may have latent stem cell potential. The ventricular-subventricular zone (V-SVZ), adjacent to the lateral ventricles, is the largest germinal niche in the adult brain and continuously gives rise to neurons that migrate to the olfactory bulb, as well as small numbers of glia (Chaker et al., 2016). We are investigating the intrinsic and extrinsic (niche) signals that regulate adult V-SVZ neural stem cells under homeostasis and during regeneration.

Intrinsic regulation of adult neural stem cells and their lineage
A key limitation in the adult neural stem cell field has been the identification of markers that allow the in vivo identification and isolation of adult neural stem cells. We have recently developed a simple strategy that allows the purification of both quiescent (dormant) and activated (dividing) adult neural stem cells as well as their progeny using fluorescence activated cell sorting (FACS) (Pastrana et al., 2009, Codega et al., 2014). Quiescent and activated stem cells isolated directly from their in vivo niche exhibit dramatically different cell cycle, molecular, and functional properties and have unique transcriptional signatures. This FACS purification strategy provides a powerful approach to investigate the biology of adult neural stem cells. In ongoing work we are defining the heterogeneity and potential of purified populations, as well as the gene regulatory networks underlying adult neural stem cell quiescence and activation.

Niche regulation of adult neural stem cells
V-SVZ stem cells span different compartments of the stem cell niche. They contact both the cerebrospinal fluid (CSF), which flows through the ventricles, and the vasculature. We are using a combination of novel anatomical and in vitro approaches to elucidate the diverse niche components that mediate adult neural stem cell behavior.

Vascular niche: The vasculature is an important component of the V-SVZ neural stem cell niche, and has unique properties (Tavazoie et al., 2008). Stem cells directly contact blood vessels at specialized sites that lack astrocyte endfeet. An open question is whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain. We have optimized a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain micro-regions of non-transgenic mice (Crouch et al., 2015). This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different states. We are defining endothelial and pericyte-derived factors that influence V-SVZ cells.
Choroid plexus/Cerebrospinal fluid niche: Adult neural stem cells contact the lateral ventricle via a thin process, and are continuously bathed by the cerebrospinal fluid (CSF). However little is known about the effect of the CSF compartment on adult neural stem cell function. The CSF is produced by the choroid plexus, which floats in the brain ventricles. Although the lateral ventricle choroid plexus (LVCP) is in close proximity to the V-SVZ, it has largely been ignored. We have found that in addition to homeostatic functions, the LVCP is a key component of the adult V-SVZ NSC niche (Silva-Vargas et al., 2016). LVCP secreted factors promote colony formation and proliferation of purified quiescent and activated V-SVZ NSCs, as well as of transit amplifying cells. Moreover, the functional effect of the LVCP secretome changes during aging. In ongoing work we are investigating how the LVCP dynamically responds to different physiological states and affects adult neural stem cell behavior.

Publications 2017

Tome-Garcia, Jessica; Tejero, Rut; Nudelman, German; Yong, Raymund L.; Sebra, Robert; Wang, Huaien; Fowkes, Mary; Magid, Margret; Walsh, Martin; Silva-Vargas, Violeta; Zaslavsky, Elena; Friedel, Roland H.; Doetsch, Fiona; Tsankova, Nadejda M. (2017). Prospective isolation and comparison of human germinal matrix and Glioblastoma EGFR(+) populations with stem cell properties. Stem Cell Reports, 8(5), 1421-1429.
The response of the β1AR receptor to binding of antagonist and agonist drugs as observed by 1H-15N NMR spectra on its 15N-labeled valine residues.

β1-adrenergic receptor

G protein-coupled receptors (GPCRs) are physiologically important transmembrane signaling proteins that trigger intracellular responses upon binding of extracellular ligands. Despite breakthroughs in GPCR crystallography, the details of ligand-induced signal transduction are not well understood due to missing dynamical information. We could recently show that receptor motions can be followed at virtually any backbone site in a thermostabilized mutant of the turkey β1-adrenergic receptor using NMR spectroscopy in solution (Isogai et al., Nature, 2016). Labeling with 15N-valine in a eukaryotic expression system provides over twenty resolved resonances that report on structure and dynamics in six ligand complexes and the apo form. The response to the various ligands is heterogeneous in the vicinity of the binding pocket, but gets transformed into a homogeneous readout at the intracellular side of helix 5 (TM5), which correlates linearly with ligand efficacy for the G protein pathway. The effect of several pertinent, thermostabilizing point mutations could be followed by reverting them to the native sequence. The results show that even the fully thermostabilized receptor undergoes activating motions in TM5, but the fully active state is only reached in presence of Y227 and Y343 by stabilization with a G protein-like partner. The combined analysis of chemical shift changes from the point mutations and ligand responses identifies crucial connections in the allosteric activation pathway and presents a general experimental method to delineate signal transmission networks at high resolution in GPCRs. We are currently applying this technique to other GPCRs such as CCR5.

Abelson (Abl) kinase

Abelson kinase is a drug target in the treatment of chronic myelogenous leukemia (CML), against which clinically highly efficacious ATP-competitive inhibitors (imatinib and others) have been developed. However, spontaneous mutations in advanced-stage patients render these inhibitors inefficient. Recently, a new type of allosteric inhibitors was shown in preclinical studies to overcome the resistance against ATP-binding pocket inhibitors (Zhang et al., Nature, 2010). The exact mechanism of the allosteric inhibition is currently
unclear. In collaboration with Novartis (Basel) we had previously determined the unknown solution conformations of the Abl kinase domain alone (Vajpai et al., JBC, 2008). We have now also determined the solution conformations of a much larger 52-kDa SH3/SH2/kinase domain construct under the influence of various inhibitors by solution NMR and SAXS (Skora et al., Proc Natl Acad Sci USA, 2013). The addition of imatinib induces a large structural rearrangement characterized by the detachment of the SH3-SH2 domains from the kinase domain and the formation of an “open” inactive state, which is inhibited in the ATP site. In contrast to imatinib, binding of the allosteric inhibitor GNF-5 keeps the protein in the “closed” state. Combination of imatinib with GNF-5 brings the conformation again to a “closed” state. These findings on the allosteric actions of the two classes of inhibitors reveal molecular details of their recently reported synergy to overcome drug resistance.

Multidrug recognition

Thiostrepton-induced protein A (TipA) is a minimal bacterial, multidrug resistance (MDR) protein against very diverse antibiotics of the thiostrepton class. We have determined the solution structures and dynamics of the antibiotic binding domain of TipA in complexes with several antibiotics (Habazettl et al., PNAS, 2014). The data give unique insights into multidrug recognition by a complete MDR system: (i) a four-ring motif present in all known TipA-inducing antibiotics is recognized specifically by conserved TipA amino acids and induces a large transition from a partially unfolded to a globin-like structure. (ii) The variable part of the antibiotic is accommodated within a flexible cleft that rigidifies upon drug binding. Remarkably, the identified recognition motif is also the major interacting part of the antibiotic with the ribosome. Hence the TipA multidrug resistance mechanism is directed against the same chemical motif that inhibits protein synthesis. This makes the multidrug recognition mechanism by TipA a useful model for ribosomal thiopeptide binding and antibiotic development.

CCR5

The chemokine receptor CCR5 belongs to the class of G-protein coupled receptors (GPCRs). CCR5 is expressed on the surface of T-cells and activated after binding the endogenous chemokines MIP-1α, MIP-1β, and RANTES. CCR5 is the key molecule for HIV entrance into target cells, which proceeds via the sequential interaction of the viral protein gp120 with the host-cell factors CD4 and CCR5. Very promising HIV entry inhibitors are based on CCR5 ligands, comprising the natural ligand RANTES.

In recent years, we have obtained structural information on CCR5 and its complex with RANTES by studying the interaction of the soluble protein RANTES with peptides derived from the extracellular surface of CCR5 (Duma et al., J Mol Biol, 2007). This information helped to devise more potent peptide-based HIV entry inhibitors (Chemistry & Biology, 2012). As part of these efforts, we have recently characterized the dynamics, oligomeric states and detergent interactions of 5P12-RANTES, an engineered RANTES variant that is currently in phase I clinical trials (Wiktor et al., Biophys J, 2013). We have also developed methods to produce CCR5 in sufficient amounts for structural and biophysical studies (Nisius et al., Protein Expr Purif, 2008; Van den Bergh et al., PLOS One, 2012; Wiktor et al., J. Biomol., 2013). This project emerged from the EU-FP7 project CHAARM (Combine d Highly Active Anti-Retroviral Microbicides), a collaborative effort to develop combinations of new and existing anti-HIV agents, which can be applied topically to reduce transmission of HIV.
NMR structure of the cyclic di-GMP receptor PA4608 from *Pseudomonas aeruginosa* in complex with its cyclic di-GMP ligand on the background of a typical bacterial biofilm.

c-di-GMP signaling

Cyclic di-guanosine-monophosphate (c-di-GMP) is a bacterial signaling molecule that triggers a switch from motile to sessile bacterial lifestyles. This mechanism is of considerable pharmaceutical interest, since it is related to bacterial virulence, biofilm formation and persistence of infection. Understanding this mechanism may offer new routes to treatment of bacterial infections. We have recently solved the structure of the PilZ homolog PA4608 in complex with cyclic di-GMP (Habazettl et al., J Biol Chem, 2011). This complex shows large structural changes relative to the apo form. As a result of the rearrangements of N- and C-termini, a highly negative surface is created on one side of the protein complex. We propose that this movement of the termini and the resulting negative surface forms the basis for downstream signaling. We have recently also determined the exchange kinetics and equilibrium constants of various oligomeric forms of c-di-GMP (Gentner et al., J Am Chem, 2012). These projects are in collaboration with the groups of Prof. Urs Jenal and Prof. Tilman Schirmer (Biozentrum).

Towards an atom-scale description of order in unfolded proteins from new NMR parameters

A detailed, quantitative description of the unfolded state ensemble of proteins is crucial for understanding protein folding, protein misfolding diseases such as Alzheimer’s and Parkinson’s, and function of intrinsically disordered proteins. The astronomical size of the conformational space of an unfolded polypeptide chain makes such a description both experimentally and theoretically very difficult.

Using new NMR experimental parameters comprising residual dipolar couplings and paramagnetic relaxation enhancements, we have been able to obtain a highly detailed, quantitative description of unfolded polypeptides. The results show that unfolded states contain considerably more residual, native-like structure than previously anticipated, thereby resolving Levinthal’s paradox that protein folding would need almost infinite times in an unbiased search of all accessible conformations.

Comparison of distances between amino acids in urea-denatured ubiquitin that were derived either from a calculated structural ensemble based on NMR and SAXS data or from single molecule FRET experiments. Both the average distances (left) as well as the underlying distance distributions (right) agree exceedingly well.

Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS

We have determined structural ensembles of urea-denatured ubiquitin based on a very high number (>10/residue) of experimental (RDC, PRE, SAXS) constraints, which show the existence of about 10% residual native structure under these conditions (Huang and Grzesiek, J Am Chem Soc, 2010). We have recently extended this work by single molecule FRET studies in collaboration with Prof. B. Schuler (U. Zürich) (Aznauryan et al., Proc Natl Acad Sci USA, 2016). We find excellent agreement between NMR- and FRET-derived distances. The FRET data indicate a long-range Gaussian chain behavior and long-range reconfiguration times of 50-100 ns, which agree with a polymer Rouse model with internal friction. The local native, secondary structure propensities evident from the NMR data are completely compatible with this Gaussian long-range behavior. The long-range and long-time scale information from single molecule FRET is highly complementary to the short-range and fast-time scale NMR information.
The application of high pressure at low temperature makes it possible to observe the cold-denatured state of ubiquitin by NMR at atomic resolution. This state contains native and non-native secondary structure elements that are every similar to the alcohol-denatured state. The transition can be studied in a continuous manner from the folded to the unfolded state.

High pressure NMR reveals close similarity between cold and alcohol protein denaturation

Proteins denature not only at high, but also at low temperature as well as high pressure. These denatured states are not easily accessible for experiment, since usually heat denaturation causes aggregation, whereas cold or pressure denaturation occur at temperatures well below the freezing point of water or pressures above 5 kbar, respectively. We have obtained atomic details of the pressure-assisted, cold-denatured state of ubiquitin at 2500 bar and 258 K by high-resolution NMR techniques (Vajpai et al., Proc Natl Acad Sci USA, 2013). This state contains on the order of 20% native-like and non-native secondary structure elements. These structural propensities are very similar to the previously described alcohol-denatured (A-) state. The close similarity of pressure-assisted, cold-denatured and alcohol-denatured state supports a hierarchical mechanism of folding and the notion that similar to alcohol, pressure and cold reduce the hydrophobic effect. Indeed, at non-denaturing concentrations of methanol, a complete transition from the native to the A-state can be achieved at ambient temperature by varying the pressure from 1 to 2500 bar. This method should allow highly detailed studies of protein folding transitions in a continuous and reversible manner.

Key stabilizing elements of protein structure identified through pressure and temperature perturbation of its hydrogen bond network

Hydrogen bonds are key constituents of biomolecular structures, and their response to external perturbations may reveal important insights about the most stable components of a structure. NMR spectroscopy can probe hydrogen bond deformations at very high resolution through hydrogen bond scalar couplings (HBCs). However, the small size of HBCs has so far prevented a comprehensive quantitative characterization of protein hydrogen bonds as a function of the basic thermodynamic parameters of pressure and temperature. Using a newly developed pressure cell, we have mapped pressure- and temperature-dependent changes of 31 hydrogen bonds in ubiquitin by measuring HBCs with very high precision (Nisius and Grzesiek, Nat Chem, 2012). Short-range hydrogen bonds are only moderately perturbed, but many hydrogen bonds with large sequence separations (high contact order) show greater changes. In contrast, other high-contact-order hydrogen bonds remain virtually unaffected. The specific stabilization of such topologically important connections may present a general principle to achieve protein stability and to preserve structural integrity during protein function.
Important Partners
M. Blackledge, (Institut de Biologie Structurale, Grenoble, FR); L. Emsley (EPFL, CH); M. Geyer (Max-Planck-Institut für molekulare Physiologie, Dortmund, DE); O. Hartley (University of Geneva, CH); J. Jahnke (Novartis Pharma, Basel, CH); U. Jenal (Biozentrum); J. Lewandowski (University of Warwick, UK); G. Schertler (Paul-Scherrer Institut, Villigen); T. Schirmer (Biozentrum, Basel, CH); B. Schuler (University of Zürich, CH); H. Stahlberg (Biozentrum); C. Thompson (UBC, Vancouver, Canada); L. Vangeli (DIBIT, Milano, IT); U. Zähringer (Forschungszentrum Börstel, DE).

Publications 2017
Nesper, Jutta; Hug, Isabelle; Kato, Setsu; Hee, Chee-Seng; Habazettl, Judith Maria; Manfredi, Pablo; Grzesiek, Stephan; Schirmer, Tilman; Emonet, Thierry; Jenal, Urs (2017). Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife, 6, e28842.
Introduction

Cell growth is highly regulated. Cells respond to nutrients or other appropriate growth stimuli by up-regulating macromolecular synthesis and thereby increasing in size. Conversely, cells respond to nutrient limitation or other types of stress by down-regulating macromolecular synthesis and enhancing turnover of excess mass. Thus, the control of cell growth involves balancing positive regulation of anabolic processes with negative regulation of catabolic processes. Growth is also controlled relative to cell division. In proliferating cells, growth is linked to the cell cycle such that most cells precisely double their mass before dividing. In other physiological contexts, such as load-induced muscle hypertrophy or growth factor-induced neuronal growth, cell growth is controlled independently of the cell cycle. Furthermore, in addition to the temporal control of cell growth described above, cell growth can be subject to spatial constraints. For example, budding yeast and neurons grow in a polarized manner as a result of new mass being laid down only at one end of the cell. Finally, in multicellular organisms, growth of individual cells is controlled relative to overall body growth such that the organs and tissues constituting the organism are properly proportioned.

The TOR signaling network

What are the mechanisms that mediate and integrate the many parameters of cell growth? In other words, what determines that a cell grows only at the right time and at the right place? Remarkably, the study of these mechanisms has been largely neglected, despite their clinical relevance and despite cell growth being, along with cell division and cell death, one of the most fundamental (and obvious) features of life. Also remarkable is the finding that cell growth control, regardless of eukaryotic organism or physiological context, seems always to involve the protein kinase TOR (Target Of Rapamycin) and its signaling network. TOR has thus become known as a central controller of cell growth. Indeed, the discovery of TOR led to a fundamental change in how one thinks of cell growth. It is not a spontaneous process that just happens when building blocks (nutrients) are available, but rather a highly regulated, plastic process controlled by TOR-dependent signaling pathways.

TOR, originally discovered in our laboratory, is structurally and functionally conserved from yeast to human (including worms, flies, and plants). TOR in mammals (mTOR) controls cell growth and metabolism in response to nutrients (e.g., amino acids), growth factors (e.g., insulin, IGF-1, PDGF), and cellular energy status (ATP). Nutrients are the dominant TOR input as high levels of amino acids can compensate for an absence of the other mTOR inputs but not vice versa, and only nutrients activate TOR in unicellular organisms. The growth factor signaling pathway, grafted onto the more ancestral
nutrient sensitive TOR pathway, co-evolved with multicellularity. TOR activates cell growth by positively and negatively regulating several anabolic and catabolic process, respectively, that collectively determine mass accumulation and thus cell size. The anabolic processes include transcription, protein synthesis, ribosome biogenesis, nutrient transport, and mitochondrial metabolism. Conversely, TOR negatively regulates catabolic processes such as mRNA degradation, ubiquitin-dependent proteolysis, autophagy and apoptosis.

TOR is an atypical serine/threonine kinase that is found in two functionally and structurally distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in mammals), each of which signals via a different set of effector pathways. TORC1 is rapamycin sensitive whereas TORC2 is rapamycin insensitive. The best-characterized phosphorylation substrates of mTOR are S6K and 4E-BP1 via which mTORC1 controls translation, and Akt/PKB via which mTORC2 controls cell survival and likely other processes. Like TOR itself, the two TOR complexes and the overall architecture of the TOR signaling network appear to be conserved from yeast to human. Thus, the TOR signaling network is a primordial or ancestral signaling network conserved throughout eukaryotic evolution to regulate the fundamental process of cell growth. As a central controller of cell growth and metabolism, TOR plays a key role in development and aging, and is implicated in disorders such as cancer, cardiovascular disease, obesity, and diabetes.

We are studying the TOR signaling network in the yeast *Saccharomyces cerevisiae*, in mammalian cells, in mice, and in human tumors. A major finding in our laboratory in recent years was the fact that TOR controls cell growth via two major signaling branches. Furthermore, we discovered the two TOR complexes and demonstrated that these two complexes correspond to the two previously described TOR signaling branches. More recently, in collaboration with our in-house colleague Markus Rüegg, we introduced the mouse as an experimental system to study the role of mTOR in regulating whole body growth and metabolism. In collaboration with the clinician Markus Heim, we have initiated a translational research project aimed at defining signaling pathways that allow tumors to evade therapy. The overall goal of our studies is to elucidate how growth and metabolism are regulated in health and disease.
Publications 2017

Guri, Yakir; Colombi, Marco; Dazert, Eva; Hindupur, Sravanth K.; Roszik, Jason; Moes, Suzette; Jenoe, Paul; Heim, Markus H.; Riezman, Isabelle; Riezman, Howard; Hall, Michael N. (2017). mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell, 32(6), 807-823.e12.

Tang, Fei; Zhang, Peng; Ye, Peiyiing; Lazarski, Christopher A.; Wu, Qj; Bergin, Ingrid L.; Bender, Timothy P.; Hall, Michael N.; Cui, Ya; Zhang, Liguow; Jiang, Taijiao; Liu, Yang; Zheng, Pan (2017). A population of innate myelolymphoblastoid effector cell expanded by inactivation of mTOR complex 1 in mice. eLife, 6, ahead of print.

Bozadjieva, Nadejda; Blandino-Rosano, Manuel; Chase, Jennifer; Dai, Xiao-Qing; Cummings, Kelsey; Gimeno, Jennifer; Dean, Danielle; Powers, Alvin C.; Gittes, George K.; Ruegg, Markus A.; Hall, Michael N.; MacDonald, Patrick E.; Bernal-Mizrachi, Ernesto (2017). Loss of mTORC1 signaling alters pancreatic α cell mass and impairs glucagon secretion. Journal of Clinical Investigation, 1-15.

Singer, Jochen; Ruscheweyh, Hans-Joachim; Hofmann, Ariane L.; Thurnherr, Thomas; Singer, Franziska; Toussaint, Nora C.; Ng, Charlotte K. Y.; Piscuoglio, Salvatore; Beisel, Christian; Christofori, Gerhard; Dummer, Reinhard; Hall, Michael N.; Krek, Wilhelm; Levesque, Mitchell; Manz, Markus G.; Moch, Höger; Papassotiropoulos, Andreas; Stekhoven, Daniel J.; Wild, Peter; Wüst, Thomas; Rinn, Bernd; Beerenwinkel, Niko (2017). NGS-pipe: A flexible, easily extendable, and highly configurable framework for NGS analysis. Bioinformatics, 1-2.

Blandino-Rosano, Manuel; Barbaresso, Rebecca; Jimenez-Palomares, Margarita; Bozadjieva, Nadejda; Werneck-de-Castro, Joao Pedro; Hatanaka, Masayuki; Mirmira, Raghavendra G.; Sonenberg, Nahum; Liu, Ming; Ruegg, Markus A.; Hall, Michael N.; Bernal-Mizrachi, Ernesto (2017). Loss of mTORC1 signaling impairs β-cell homeostasis and insulin processing. Nature Communications, 8, 16014.

Benjamin, Don; Hall, Michael N. (2017). mTORC1 controls synthesis of its activator GTP. Cell Reports, 19(13), 2643-2644.

Fitter, Stephen; Matthews, Mary P.; Martin, Sally K.; Xie, Jianling; Ooi, Soo Siang; Walkley, Carl R.; Codrington, John D.; Ruegg, Markus A.; Hall, Michael N.; Proud, Christopher G.; Gronthos, Stan; Zannettino, Andrew C. W. (2017). mTORC1 plays an important role in skeletal development by controlling preosteoblast differentiation. Molecular and Cellular Biology, 37(7), e00668-16.
Skeletal muscle has an enormous capacity to adapt to external stimuli including physical activity, oxygen, temperature, nutrient availability and composition. Inadequate muscle function is linked to an increased risk for many chronic diseases such as obesity, type 2 diabetes, cardiovascular disorders, osteoporosis, neurodegenerative events, mood disorders, age-related muscle wasting, and certain cancers. Inversely, regular exercise is an excellent prevention and therapeutic intervention for many of these pathologies and improves life quality and expectancy.

The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is one of the key factors in muscle adaptation to exercise. Muscle activity induces PGC-1α gene expression and promotes posttranslational modifications of the PGC-1α protein. In turn, PGC-1α regulates the adaptations of muscle to endurance training. Accordingly, ectopic expression of PGC-1α in muscle is sufficient to induce a trained phenotype whereas mice with a genetic ablation of the PGC-1α gene in muscle have an impaired endurance capacity.

Our group is studying the mechanisms that control muscle cell plasticity and their physiological consequences. We try to integrate molecular biology, work in muscle cells in culture and observations on mice with different activity levels to obtain a comprehensive picture of the adaptations in the active and the inactive muscle.

Regulation and coordination of metabolic pathways

Endurance exercise is a strong promoter of mitochondrial biogenesis and oxidative metabolism of lipids. At the same time, skeletal muscle of endurance athletes exhibits increased storage of intramyocellular lipids, similar to what is observed in muscle of type 2 diabetic patients (the “athlete’s paradox”). Furthermore, the boost in mitochondrial function potentially augments the generation in harmful side-products, e.g. incomplete fatty acid oxidation products or reactive oxygen species. However, neither the lipid accumulation nor the oxidative metabolism in the exercised muscle exert detrimental effects,
in stark contrast to the pathologies that develop under seemingly similar conditions in type 2 diabetes and other muscle-associated diseases. We study the coordination of anabolic and catabolic pathways in order to pinpoint the differences in substrate fluxes in the healthy and the diseased muscle.

Molecular changes in muscle atrophy and dystrophies

Muscle disuse, induced by a Western lifestyle or caused by diseases, leads to fiber atrophy, reduced muscle functionality and is ultimately fatal in certain inherited and sporadic muscular dystrophies. Little is known about the etiology of most of these diseases and as a result, no efficacious therapy exists for these devastating disorders. However, the induction of a trained phenotype ameliorates many of the symptoms of muscle wasting and thereby improves muscle function. For example, we have shown that using a genetic model for endurance training, PGC-1α muscle-specific transgenic mice, helps to ameliorate disuse-induced muscle fiber atrophy and Duchenne muscular dystrophy. Other groups have demonstrated that ectopically expressed PGC-1α also improves a mitochondrial myopathy, blunts muscle damage by the statin drugs and reduces sarcopenia, muscle wasting in aging in the respective animal models. We are currently studying how PGC-1α mediates this broad spectrum, health-beneficial effect on muscle and how this could be exploited therapeutically.

Integration of signaling pathways and spatiotemporal control of gene expression

In exercise, PGC-1α transcription, protein levels and activity are modulated by different signaling pathways. While all of the major signaling pathways in the trained muscle converge on PGC-1α (figure part A), the consequences, the integration and the temporal coordination of these signals are not clear. Upon activation, PGC-1α controls the transcription of many different gene families in muscle to promote a trained phenotype. However, the specificity of gene regulation by PGC-1α varies according to the cellular context (figure part B). For example, the regulation of postsynaptic neuromuscular junction genes by PGC-1α is spatially fiber.

Important partners

Johan Auwerx (Ecole Polytechnique Federale de Lausanne, CH); Urs Boutellier (Eidgenossische Technische Hochschule Zurich, CH); Daniel Eberli (Universitatsspitall Zurich, CH); Hans Hoppeler (Universitat Bern, CH); Markus A. Ruegg (Biozentrum, Basel, CH); Bruce M. Spiegelman (Dana-Farber Cancer Institute and Harvard Medical School, US); Erik van Nimwegen (Biozentrum, Basel, CH); Mihaela Zavolan (Biozentrum, Basel, CH); Francesco Zorzato (Universitatsspitall Basel, CH)

PGC-1α controls skeletal muscle plasticity in exercise. A) Every major signaling pathway in the trained muscle converges on PGC-1α by inducing PGC-1α gene expression, post-translationally modifying the PGC-1α protein, or by doing both. B) Spatiotemporal control of the specificity of the response to PGC-1α activation in muscle depending on the cellular context.

Abbreviations: AMPK, AMP-dependent protein kinase; p38 MAPK, p38 mitogen-activated protein kinase; PGC-1α, peroxisome proliferator-activated receptor γ coactivator 1α; ROS, reactive oxygen species; SIRT1, sirtuin 1.
Publications 2017

Kupr, Barbara; Schnyder, Svenia; Handschin, Christoph (2017). Role of nuclear receptors in exercise-induced muscle adaptations. *Cold Spring Harbor perspectives in medicine*, 7(6), a029835.

Haralampieva, Deana; Salemi, Souzan; Dinulovic, Ivana; Sulser, Tullio; Ametamey, Simon; Handschin, Christoph; Eberli, Daniel (2017). Human muscle precursor cells overexpressing PGC-1α enhance early skeletal muscle tissue formation. *Cell Transplantation*, 26(6), 1103-1114.

Furrer, Regula; Eisele, Petra S.; Schmidt, Alexander; Beer, Markus; Handschin, Christoph (2017). Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. *Scientific Reports*, 7, 40789.

Ross, Jacob Alexander; Pearson, Adam; Levy, Yotam; Cardel, Bettina; Handschin, Christoph; Ochala, Julien (2017). Exploring the role of PGC-1α in defining nuclear organisation in skeletal muscle fibres. *Journal of Cellular Physiology*, 232(6), 1270-1274.

Prof. Dr. Christoph Handschin
» further information

Postdoctoral Fellows
Dr. Julien Delezie
Dr. Regula Furrer
Dr. Joaquin Perez-Schindler

PhD Students
Fabienne Battilana
Barbara Heim
Anne Krämer
Aurel Leuchtmann
Geraldine Maier
Martin Weihrauch

Master Student
Julie Patrizia Klapdor

Administrative Assistant
Jny Wittker

Technical Associates
Gesa Brochmann Santana Santos
Bettina Karrer-Cardel
Stefan Steurer
We are interested in describing structural and functional details of integral outer membrane proteins and their biogenesis at the atomic level. The outer membrane proteins of Gram-negative bacteria and mitochondria are responsible for a wide range of essential cellular functions, including signal transduction, catalysis, respiration, and transport. At the same time, some of them are good targets for novel antibiotics. Our main technique of expertise is nuclear magnetic resonance (NMR) spectroscopy, which we combine with complementary techniques. Further interests are structural determinants for chaperone-client interactions and structural and functional aspects of the innate immune response.

Molecular chaperones play a key role in outer membrane protein biogenesis, forming a natural assembly line for transport of the unfolded proteins to their target membrane. We employ high-resolution NMR studies of large 70-100 kDa membrane protein-chaperone complexes to provide an atomic resolution description of the underlying molecular mechanisms, such as Skp (Fig. 1, Burmann et al., Nat. Struct. Mol. Biol., 2013). Subsequent projects address the other chaperones. We want to know the details how the polypeptide transport is accomplished, how the substrates are recognized and how the final folding and insertion step is catalyzed.

Along these lines, we have used NMR spectroscopy to elucidate the mechanism underlying client recognition by the ATP-independent chaperones Spy, SurA and Skp at the atomic level (Fig. 2, He et al., Sci. Adv., 2016). The chaperones interact with the partially folded client Im7 by selective recognition of flexible, locally frustrated regions in a dynamic fashion. Spy destabilizes a partially folded client, but spatially compacts an unfolded client conformational ensemble. By increasing client backbone dynamics, the chaperone facilitates the search for the native structure. The similarity of the interactions suggests that the underlying principle of recognizing frustrated segments is of fundamental nature.

Many β-barrel outer membrane proteins (Omps) can autonomously fold and insert into a target membrane or membrane mimic. The Omp folding mechanism is biophysically intriguing but only poorly understood. We have developed an experimental setup that allowed for the first time the observation of hydrogen bond formation during Omp folding by combining H/D-exchange with NMR spectroscopy and mass spectrometry (Fig. 3, Raschle et al., Angew. Chem. Int. Ed., 2016). OmpX folding into detergent micelles is rate-limited by circular barrel closure from a rapidly exchanging conformational equilibrium. Folding is thus a rare, not a slow process.
A combination of single-molecule force spectroscopy (SMFS) and NMR spectroscopy was employed to characterize how the periplasmic holdase chaperones SurA and Skp shape the folding trajectory of the large β-barrel Omp FhuA from *E. coli* (Fig. 4, Thoma et al., Nat. Struct. Mol. Biol., (2015)). The unfolded FhuA polypeptide is prone to misfolding and cannot insert back into the membrane. The chaperones SurA and Skp prevent unfolded FhuA polypeptide from misfolding by stabilizing a dynamic state, allowing a search for structural intermediates. The SurA-chaperoned FhuA polypeptide refolds by stepwise inserting individual β-hairpins into the lipid membrane. Thereby the lipid membrane acts as a free energy sink and physically separates transient folds from the chaperones. This trapping of intermediates funnels the unfolded FhuA polypeptide towards its native structure.

As the final step of outer membrane biogenesis, Omp substrates are folded and inserted into the membrane by members of the Omp85 family of proteins. This family comprises the proteins BamA and TamA, but also two-partner secretion systems such as FhaC in Gram-negative bacteria, and Sam50 in mitochondria. We want to determine the molecular mechanisms of folding and insertion by NMR spectroscopy, X-ray crystallography and complementary techniques. Our hypothesis for the functional mechanism is the formation of a hybrid barrel as the folding intermediate, which would allow the translocation of a passenger domain for autotransporter proteins (Fig. 5, Gruss et al., Nat. Struct. Mol. Biol., 2013).

The innate immune response reacts to pathogens, danger- and damage-related intracellular signals by assembling large inflammasome complexes. We have determined the structure of the mouse ASC inflammasome filament (Fig. 6, Sborgi et al., Proc. Natl. Acad. Sci. USA, 2015) and characterized its polymerization process by employing a combination of NMR spectroscopy and cryo-electron microscopy. In the future, we are interested in a quantitative, atomic-resolution description of inflammasome signaling and its regulation by biomacromolecules and environmental parameters, as well as the molecular mechanisms of gasdermin function.
Publications 2017

Anton, Leonie; Sborgi, Lorenzo; Hiller, Sebastian; Broz, Petr; Maier, Timm (2017). Insights into Gasdermin D activation from the crystal structure of its C-terminal domain. *bioRxiv*, 2017, 187211.

Morgado, Leonor; Burmann, Björn M; Sharpe, Timothy; Mazur, Adam; Hiller, Sebastian (2017). The dynamic dimer structure of the chaperone trigger factor. *Nature Communications*, in press.
Our research is focused on understanding how neuronal circuits process visual information coming from the eye and integrate it with other signals to enable animals to interpret the visual world and interact with their environment. Furthermore, we investigate how these circuits change during learning and new experiences, allowing the brain to store new information and to adapt to changes in the environment.

To study these questions we use a wide range of multi-disciplinary methods: in vivo two-photon imaging of neuronal and synaptic function and structure, extracellular and intracellular electrophysiological recordings, animal behavior and theoretical modelling, together with molecular and genetic approaches to identify different cell types, record and manipulate their function and trace specific pathways.

Changes in visual circuits during learning

Learning alters our perceptions, cognition and behavior by modifying neuronal circuits in the brain. Understanding how this happens is crucial for understanding normal brain function, and for devising therapeutic approaches for correcting disorders of information storage and retrieval such as dementia. Yet the mechanisms of learning in the intact brain are not well understood. Relatively little is known about how new information is stored in neuronal circuits and how new experiences, which are behaviourally relevant for the animal alter single cells, their connections and the flow of information through neuronal networks. One reason for our lack of knowledge is that it has long been impossible to repeatedly record activity from the same identified neurons and their connections over the course of days or weeks. The newest generation of genetically-encoded calcium indicators in combination with two-photon laser scanning microscopy now makes this possible. These indicators allow us to visualize the activity of neuronal networks with single-cell and even single-synapse resolution in the intact brain.

To study learning-related changes in the brain, we are developing different behavioral paradigms for mice in which they have to learn visually-guided tasks. These tasks enable us to measure the animals’ visual perception and to assess their learning progress. We are then using calcium indicators to follow directly how the function of neurons in different visual areas changes when animals make new associations during visually-guided learning. Furthermore, we are studying which circuit modifications underlie these functional changes, by following individual synapses of different pathways over the time course of learning.

The function of higher-order thalamic pathways during vision

Visual perception relies on information flow from the eye to the visual cortex, where it is relayed and transformed via a series of thalamic and cortical processing stages. In recent years it has become increasingly clear that the traditional hierarchical model of sensory processing, which is based mostly on feed-forward flow of sensory information, is incomplete. Prominent feedback projections from higher-order brain areas and information from parallel circuits involving the thalamus impinge on every cortical processing level. Such major alternative pathways may convey contextual information, such as the animal’s motor output, previous experience, expectations and stimulus relevance, which can strongly modulate visual responses and influence how feed-forward sensory information is interpreted in the context of an animal’s internal state and behavior. However, little is known about what information is conveyed through these different pathways and how it influences the processing of feed-forward sensory information to allow animals to actively perceive and interpret the environment based on their past experience.
We are studying the organization and function of one major pathway that might integrate visual and non-visual information but which is still very elusive – the input from higher-order thalamic nuclei into visual cortex. We are studying the organization of these thalamo-cortical circuits in the mouse using anatomical tracing methods and are investigating which information is conveyed to different cortical areas by higher-order thalamic signals in the behaving animal and how it influences the processing of visual information.

Publications 2017

Prof. Dr. Sonja Hofer

Since the beginning of 2018, Prof. Sonja Hofer continues her research at the Sainsbury Wellcome Centre for Neural Circuits and Behaviour (UCL) in London.

Postdoctoral Fellows

Dr. Antonin Blot
Dr. Morgane Roth

PhD Students

Ioana Teodora Gasler
Mitra Javadzadeh No

Administrative Assistant

Susanna Notz

Technical Associate

Fabia Imhof
Our studies aim at understanding the molecular and cellular principles involved in the growth, differentiation and behavior of bacterial cells. We focus on the nucleotide second messenger, cyclic di-guanosine-monophosphate (c-di-GMP) and its role in bacterial cell signaling and dynamics (Schirmer & Jenal, Nature Reviews Microbiol, 2009). C-di-GMP emerges as a ubiquitous signaling molecule that modulates multiple aspects of bacterial growth and behavior, including the formation of a sedentary, community-based lifestyle and its association with chronic forms of bacterial infections (Fig. 1) (Böhm, Cell, 2010; Malone, PLoS Pathog., 2012; Steiner, EMBO J, 2013). Our aims are to identify and characterize c-di-GMP control modules in different bacterial model organisms, to uncover and exploit the basic molecular and mechanistic principles of c-di-GMP signaling, and to probe its role in bacterial growth and persistence.

Role of c-di-GMP in cell cycle progression and cell fate determination

We use Caulobacter crescentus as a model to investigate the role of c-di-GMP in cell polarity and cell cycle progression. Periodic fluctuations of c-di-GMP are an integral part of the C. crescentus cell cycle clock and serve to control pole development in time and space and to coordinate these processes with the underlying cell cycle. Several diguanylate cyclases (DGC) and phosphodiesterases (PDE) contribute to the characteristic bimodal distribution of the second messenger during the Caulobacter life cycle. One of our aims is to understand their regulation in time and space (Abel, PLoS Genet., 2013). E.g. the DGC PleD is activated by phosphorylation prior to S-phase entry and sequesters to the differentiating Caulobacter cell pole where it orchestrates pole morphogenesis and replication initiation (Fig. 2) (Paul, Cell, 2008; Abel, Mol Cell, 2011). Caulobacter G1-to-S transition is mediated by a second DGC, DgcB. In the G1 swarmer cell DgcB is “neutralized” by its specific and dominant antagonist PdeA, which reduces c-di-GMP in this cell type and keeps it in the motile, replication-inert phase. Upon entry into S-phase, when cells transit into sessility, PdeA is specifically degraded leaving DgcB unopposed. PdeA dynamically localizes to the old cell pole where it is degraded by the polar protease complex ClpXP. This cell cycle dependent process is orchestrated by the single domain response regulator CpdR, which itself localizes to the old cell pole in response to its phosphorylation status, where it recruits both PdeA and ClpXP and mediates substrate delivery (Abel, Mol Cell, 2011). Together, PDE degradation and DGC activation result in a rapid and robust upshift of c-di-GMP, which coordinates drives pole morphogenesis and S-phase entry (Abel, Mol Cell, 2011).
C-di-GMP controls all aspects of Caulobacter polarity, including flagellar motility, pilus biogenesis as well as holdfast and stalk formation (Abel, PLoS Genet., 2013). The mechanisms and regulatory components contributing to timing and spatial control of polar organelle formation are one main focus of our current research (Davis, Genes Dev., 2013). In parallel, we are interested in how c-di-GMP modulates Caulobacter cell cycle progression. The c-di-GMP up-shift facilitates replication and cell division control through the controlled destruction of the replication initiation inhibitor CtrA and the cell division inhibitor KidO by the ClpXP protease complex. Cell cycle dependent degradation of these proteins entails a specific spatial arrangement where both protease and substrates transiently localize to the incipient stalked cell pole during the G1-S transition. Substrate delivery to the polar protease requires PopA, a protein that sequesters to the stalked pole upon binding of c-di-GMP (Duerig, Genes Dev., 2009). Our recent studies demonstrate how phosphosignaling, protein degradation, and c-di-GMP mediated regulatory processes are tightly interconnected to coordinately drive the Caulobacter life cycle (Fig. 2) (Abel, Mol Cell, 2011; Abel, PLoS Genet., 2013).

Role of c-di-GMP in biofilm formation and persistence

We have used Escherichia coli as a genetically versatile model organism to analyze the molecular basis of the inverse regulation of cell motility and biofilm formation by c-di-GMP. Our studies revealed that E. coli can fine-tune its swimming speed with the help of a molecular brake (YcgR) that, upon binding of c-di-GMP, interacts with the motor protein MotA to curb flagellar motor output (Böhm, Cell, 2010). These experiments demonstrate that bacteria can modulate motor output in response to environmental cues. Our studies also led to identify c-di-GMP and ppGpp as key regulatory factors of poly-[β-1,6-N-acetyl-glucosamine (poly-GlcNAc) synthesis, a polysaccharide adhesin secreted by E. coli as response to sub-inhibitory concentrations of antibiotics targeting the ribosome (Böhm, Mol Microbiol., 2009). The synergistic roles of ppGpp and c-di-GMP in biofilm induction, suggested that interference with bacterial second messenger signaling might represent an effective means for biofilm control during chronic infections.

Chronic Pseudomonas aeruginosa infections in cystic fibrosis (CF) patients can be treated with antibiotics, however full clearance is not possible due to the adaptation of infective species to a persistent lifestyle. Adaptive P. aeruginosa morphotypes include small colony variants (SCVs), slow growing and strongly adherent variants whose appearance correlates with poor lung function (Fig. 3). Our research on P. aeruginosa SCVs suggests that SCV-mediated persistence might be a novel target for antimicrobial chemotherapy. We characterized a tripartite signaling system called YfiBNR, mutations in which lead to the generation of SCV variants (Malone, PLOS Pathogens, 2010). YfiN was shown to be a membrane-bound cyclic di-GMP synthase, whose activity is tightly controlled by YfiR and YfiB. Activation of YfiN resulted in increased levels of c-di-GMP, which in turn triggered massive production of exopolysaccharides, drastically reduced growth rates, and resistance to macrophage phagocytosis. Consistent with a role for the SCV phenotype in immune system evasion, activation of YfiN significantly increased the persistence of P. aeruginosa in longterm mouse infections. Moreover, the Yfi system is under positive and negative selection in airways of CF patients (Malone, PLoS Pathogens, 2012) driving population dynamics of persistent SCVs in vivo. These studies establish a firm causal link between SCV, c-di-GMP, and chronic P. aeruginosa infections.

Important partners

Martin Ackermann (ETH Zürich); Howard Berg (Harvard University); Alain Filloux (Center for Molecular Microbiology and Infection, Imperial College, London, UK); Stephan Grzesiek (Biozentrum, University of Basel); Tilman Schirmer (Biozentrum, University of Basel); Torsten Schwede (Biozentrum, University of Basel); Victor Sourjik (DKFZ ZMBH, University of Heidelberg); Daniel Ritz (Actelion Pharmaceuticals Ltd., Allschwil, Switzerland); Volker Roth (Department of Computer Science, University of Basel); Patrick Viollier (Department of Microbiology and Molecular Medicine; University of Geneva); Jörg Vogel (Institute for Molecular Infection Biology, Würzburg University); Julia Vorholt (ETH Zürich); Michaela Zavolan (Biozentrum, University of Basel).
Publications 2017

Nesper, Jutta; Hug, Isabelle; Kato, Setsu; Hee, Chee-Seng; Habazettl, Judith Maria; Manfredi, Pablo; Grzesiek, Stephan; Schirmer, Tilman; Emonet, Thierry; Jenal, Urs (2017). Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. *eLife*, 6, e28842.

Sprecher, Kathrin S.; Hug, Isabelle; Nesper, Jutta; Potthoff, Eva; Mahi, Mohamed-Ali; Sangermani, Matteo; Kaever, Volkhard; Schwede, Torsten; Vorholt, Julia; Jenal, Urs (2017). Cohesive properties of the *Caulobacter crescentus* hold-fast adhesin are regulated by a novel c-di-GMP effector protein. *mBio*, 8(2), e00294-17.

Karyopherin-centric control of nuclear pores (SNF/SNI)
Nuclear pore complexes (NPCs) are 50 nm-diameter aqueous channels that function as the main transport hubs between the cytoplasm and nucleus in eukaryotic cells. Exclusive access is orchestrated by nuclear transport receptors (NTRs) that interact with intrinsically disordered proteins known as FG Nups that otherwise generate a permeability barrier within the NPC. Our interest is to understand how multivalent NTR-FG Nup binding impacts on FG Nup barrier function and transport kinetics at the (i) biophysical level, (ii) within individual NPCs, and (iii) in cells. Our findings thus far indicate that a classical NTR known as Kapβ1 acts as a bona fide constituent of the FG Nup barrier and plays a role in modulating selective transport control in NPCs.

Biomimetic systems for selective transport control (NCCR Molecular Systems Engineering)
Nucleocytoplasmic transport is regulated by soluble nuclear transport receptors (NTRs) that exclusively enter NPCs to accumulate selective cargoes in the nucleus against concentration gradients. Here, we want to exploit this phenomenon as a means of implementing selective transport control in biomimetic systems. To do so, we are engineering molecular adaptors that can mediate between biological and synthetic systems. This includes constructing NPC-inspired biomimetic nanopores, as well as implementing two-dimensional transport control using the so-called “dirty velcro effect”.

Fig. 1: Karyopherin-centric model of the nuclear pore complex. Artwork: Immanuel Wagner.

Fig. 2: Selective transport control in two-dimensions. The presence of preloaded Kapβ1 within the FG Nups results in a reduced binding of incoming Kapβ1 i.e., the “dirty velcro effect”.
(Schleicher et al., Nature Nanotechnology, 2014).
The mechanobiological hallmarks of living tissue (NanoTera)

Cells adapt to their microenvironments via vast mechanosensory networks that have a reciprocal effect on cellular stiffness and mechanophenotype.

In epithelia, these mechanosignals are transmitted from intercellular junctions and basal contacts formed on basement membranes (BM) into nuclei. We are investigating how mechanosignaling regulates cell polarity, cytoskeletal organization, and inter-cellular communication. Interestingly, our findings reveal that epithelial cells on native BMs exhibit several key features of living tissue that are suppressed in reconstituted basement membrane (i.e., Matrigel).

Fig. 3: ARTIDIS® stiffness (left) and immunofluorescence (right) images show epithelial layer formation when cultured on native basement membrane (green) that reveals actin (red) cytoarchitecture typical for epithelial sheets *in vivo*. The cell nucleus is depicted in blue. Image: Philipp Oertle (Biozentrum, Basel) and Vasily Gurchenkov (Institute Curie, Paris).

ARTIDIS® and nanomechanical tissue diagnostics (KTI)

We have built an atomic force microscope (AFM)-based apparatus (i.e., ARTIDIS® “Automated and Reliable Tissue Diagnostics”) to measure cellular stiffness with unsurpassed sub-cellular spatial resolution and high force sensitivity within living tissue.

By examining unadulterated human breast cancer biopsies, we have uncovered how the “softness” of cancer cells is associated with hypoxia and is fundamentally coupled to their propensity to invade and metastasize. This has resulted in a spinoff Nuomedis® that is commercializing ARTIDIS® for clinical applications of nanomechanical tissue diagnosis.
Publications 2017

Luo, Wangxi; Ruba, Andrew; Takao, Daisuke; Zweifel, Ludovit P.; Lim, Roderick Y. H.; Verhey, Kristen J.; Yang, Weidong (2017). Axonemal lumen dominates cytosolic protein diffusion inside the primary cilium. Scientific Reports, 7(1), 15793.

Schoch, Rafael L.; Emilsson, Gustav; Dahlin, Andreas B.; Lim, Roderick Y. H. (2017). Protein exclusion is preserved by temperature sensitive PEG brushes. Polymer, Epub ahead of print.

Sharma, Deepika; Gerspach, Michael A; Pfohl, Thomas; Lim, Roderick YH; Ekinci, Y (2017). Single positively charged particle trapping in nanofluidic systems. Microelectronic Engineering, 175, 43-49.
We are studying the architecture, dynamics and interactions of central macromolecular assemblies in metabolism, signaling and natural product biosynthesis. Our work builds on state-of-the-art biophysical methods, in particular cryo electron microscopy, X-ray crystallography and advanced optical microscopy in combination with eukaryotic cell culture and protein expression.

Multienzymes and regulatory complexes in lipid metabolism

Lipid biosynthesis and degradation are tightly regulated cellular processes in all organisms and are closely linked to human health. Lipids are an important source of natural chemical diversity and they are involved in signaling, trafficking and inflammation. Lipid compositions reflect the metabolic and functional state of a cell. Impaired lipid and fatty acid metabolism plays a considerable role in the pathogenesis of major threats to human health, including type 2 diabetes, fatty liver disease, atherosclerosis and cancer. A central aim of our work is to improve our understanding of the regulation of lipid and fatty acid metabolism by elucidating the structure, function and dynamic interplay of key enzymatic and regulatory protein complexes.

Eukaryotic lipid and fatty acid metabolism remains a critical challenge for studies at the cellular, molecular and atomic scale: In contrast to simple prokaryotic systems, fatty acid metabolism in eukaryotes builds upon large multifunctional enzymatic complexes. Later steps of lipid metabolism are occurring in membrane space and rely on membraneintegral or -associated proteins. We focus on multienzyme factories and large regulatory complexes in lipid and fatty acid metabolism and homeostasis. Combining experimental structural studies with functional analysis, we elucidate regulatory mechanisms and fundamental principles of multienzyme architecture.

Multienzymes integrate several functional domains for catalysis or substrate transfer into a single protein assembly. A landmark example are giant eukaryotic fatty acid synthases, which comprise seven types of enzymatic domains and carry out more than 40 reaction steps for the biosynthesis of fatty acids from carbohydrate-derived precursors. The interlinking, mechanical coupling and crosstalk between domains result in emergent properties of multienzymes beyond the functionality of their isolated building blocks. Multienzymes support unique mechanisms for the consistent regulation of committed steps in metabolism, as exemplified by the role of acetyl-CoA carboxylase in fatty acid metabolism. We are analyzing multienzyme architecture by combining cryo electron microscopy on highly dynamic large assemblies with functional analysis and single molecule studies. We have made major contributions to analyzing the structure, evolution and regulation of eukaryotic fatty acid synthases and acetyl-CoA carboxylases.
Information on the metabolic state of an organism and cell is shunted via complex signaling pathways to central regulatory complexes for signal integration. The mTOR kinase regulatory complex (mTORC1) senses amino acid levels, cellular energy state and external growth factors and, in appropriate conditions, initiates the cellular program for anabolic reactions, such as lipid biosynthesis, growth and proliferation. Due to its central role in driving cell proliferation, mTORC1 is a key target for anti-cancer therapy. We have resolved the architecture of human mTORC1 by a combination of crystallographic studies and cryo electron microscopy in collaboration with Mike Hall (Biozentrum) and Nenad Ban (ETH Zurich).

Multienzymes in polyketide biosynthesis

Polyketide synthases (PKSs) are microbial assembly line proteins and arguably the most complex and versatile biosynthetic multienzymes. Their highly diverse and complex polyketide products include compounds with outstanding biological activities, e.g. antibiotics and immunosuppressants. Polyketides are a promising source of novel drug candidates.

Our current work focuses on aspects of substrate transfer within as well as in and out of PKS modules, and on overall assembly architecture and dynamics. It builds upon cryo electron microscopy, mechanism-based chemical crosslinking and functional trapping. Understanding the functional coupling and emergent properties in key multienzymes is a prerequisite for our ultimate aim of rational tailoring of existing or the design of novel molecular factories.

Insertases, translocases and foldases in bacterial protein secretion

β-barrel membrane proteins are particularly prominent in the outer membrane of gram-negative bacteria and contribute to bacterial pathogenicity and persistence. In collaboration with Sebastian Hiller (Biozentrum, University of Basel) we are studying the family of Omp85 β-barrel membrane proteins as well as foldase proteins of the periplasmic and extracellular bacterial space and assembly in a joint effort combining NMR, X-ray crystallography and biophysical characterization. The Omp85 family includes the central BamA component of the general outer membrane insertase BAM complex, protein translocases such as FhaC, responsible for hemagglutinin secretion in a two-partner secretion system, and TamB, involved in the insertion and assembly of β-barrel autotransporters.

We have obtained a high-resolution structure of E. coli TamA by bicelle crystallization. TamA comprises three N-terminal POTRA domains and a C-terminal 16-stranded β-barrel. A striking feature is a kink towards the inside of the barrel formed by the C-terminal strand of the barrel. The kinked structure opens a gate to the lipidic phase for incoming substrates and creates a weak lateral contact in the barrel wall.

Polyketide biosynthesis is achieved either by multiple cycles of iterative action of one PKS module or by a directed handover of substrates between modules. PKSs modules share a common dimeric architecture based on a structural and functional segregation into two multidomain polypeptide regions: The condensing region is responsible for precursor elongation, the modifying region for processing of intermediates. PKS employ internal carrier protein domains (ACPs) for shuttling of covalently tethered intermediates. First models of PKS architecture have been derived from our earlier structures of fatty acid synthase. More recently, we have obtained a high-resolution hybrid structure of a complete (fully-reducing) iterative PKS. This structure revealed a conserved linker-based PKS-specific architecture and provides critical clues for PKS re-engineering.
These unique structural features suggested a mechanism for
autotransporter insertion based on lateral release. Structural
and functional experiments on the Bam complex as well as
our high-resolution structure determination of the translo-
case FhaC strongly indicate conservation of the key func-
tional elements between all members of the Omp85 family.
Further studies are required to understand how the Omp85
architecture mediates not only membrane protein insertion
but also protein translocation across the membrane in
two-partner secretion systems. In collaboration with Marek
Basler (Biozentrum), we study structural aspects of Type 6
secretion system assembly and dynamics using cryo electron
microscopy.

Catch-bond lectins in infection and inflammation
The life-time of most protein-ligand complexes is reduced
under tensile force. However, some proteins exhibit catch-
bond behavior: the life-time of their ligand complexes
increases under tensile force up to a certain threshold. Prom-
inent examples include carbohydrate-binding cell adhesion
proteins specifically adapted to flow-induced shear forces,
such as the bacterial adhesin FimH and human E-selectin.
FimH is located at the tip of surface pili of *E. coli* and mediates
adhesion to host-cell glycoproteins as a first step in urothelial
infection. E-selectin is expressed on vascular endothelia and
mediates leukocyte rolling as a prerequisite for tissue trans-
migration of leukocytes in the early inflammatory response.
Together with Beat Ernst (Pharmazentrum, University of
Basel) and Rudi Glockshuber (ETH Zurich) we study these sys-
tems in a multidisciplinary effort combining biophysical,
structural and pharmacological approaches. A key aim of our
work is to provide a detailed understanding of domain inter-
actions and their crosstalk with ligand binding. We provide
a structural and mechanistic basis for catch-bond behavior
and define relevant states for ligand design and pharmacolog-
ical intervention.

State-of-the-art methods for structural biology
To analyze dynamic macromolecular assemblies and higher
order interactions at molecular and cellular scale, we rely on
a comprehensive combination of state-of-the-art methods
implemented at the Biozentrum. The BioEM facility provides
generous access to state of the art facilities for cryoEM sample
preparation, screening and for high-resolution single-particle
analysis and cryoEM tomography. Crystal structure determi-
nation via standard and lipidic phase crystallization is aided
by microfluidic screen preparation, nanoliter crystallization
robotics and high-throughput SONICC crystal imaging. Crys-
tallographic data are collected at the nearby Swiss Light
Source at Paul Scherrer Institute, which also provides access
to the SwissFEL free electron laser. Our lab provides facilities
for large-scale protein expression in bacterial, yeast, insect
and mammalian systems. High-throughput sample prescreen-
ning for X-ray crystallography, EM and NMR via differential
scanning calorimetry and multi-well dynamic light scattering
is established. We use mechanism-based crosslinking for the
stabilization and trapping of transient complexes as well as
mass-spectrometric distance-restraint generation by chemi-
cal crosslinking (XL-MS). Excellent support in proteomics and
biophysical characterization of macromolecular complexes
and molecular interactions, as well as advanced and super-res-
olution optical microscopy are provided by inhouse service
facilities. NMR work is carried out in collaboration with the
group of Sebastian Hiller at Biozentrum. Our computational
work is carried out on dedicated infrastructure housed at the
sciCore center for scientific computation, which provides
>3PB high performance storage and cluster nodes with a
total of >8000 cores. CryoEM single particle analysis is car-
rried out on multiple dedicated 6-GPU cluster nodes and 4-GPU
workstation.
Prof. Dr. Timm Maier
» further information

Postdoctoral Fellows
Dr. Friederike Benning
Dr. Dominik Herbst
Dr. Stefan Imseng
Dr. Roman Jakob
Dr. Edward Stuttfeld

PhD Students
Leonie Anton
Yana Dem Yanenko
Anna Hagmann
Francesca Mangia
Shubham Singh

Master Students
Kai Ehrenbolger
Yves Tittes

Administrative Assistant
Alexandra Eberhardt

Publications 2017

Wang, Jing; Brackmann, Maximilian; Castaño-Díez, Daniel; Kudryashev, Mikhail; Goldie, Kenneth N.; Maier, Timm; Stahlberg, Henning; Basler, Marek (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nature Microbiology, 2(11), 1507-1512.

Navarra, Giulio; Zihlmann, Pascal; Jakob, Roman P.; Stangier, Katia; Preston, Roland C.; Rabbani, Said; Smiesko, Martin; Wagner, Bea; Maier, Timm; Ernst, Beat (2017). Carbohydrate-lectin interactions – an unexpected contribution to affinity. ChemBioChem, 18(6), 539-544.

Rabbani, Said; Fiege, Brigitte; Eris, Deniz; Silbermann, Marleen; Jakob, Roman Peter; Navarra, Giulio; Maier, Timm; Ernst, Beat (2017). Conformational switch of the bacterial adhesin FimH in the absence of the regulatory domain – engineering a minimalistic allosteric system. Journal of Biological Chemistry, article in press.

Roth, Christian; Weizenmann, Nicole; Bexten, Nicola; Saenger, Wolfram; Zimmermann, Wolfgang; Maier, Timm; Sträter, Norbert (2017). Amylose recognition and ring-size determination of amylomaltase. Science Advances, 3(1), e1601386.
The research in my lab aims to understand how sensory function emerges from highly complex synaptic interactions in large neuronal populations. I believe the best way to understand this complexity is to (i) record activity in single neurons and large neuronal ensembles in the intact brain during sensation, (ii) map connections between identified components of this circuit, and (iii) use computational models to understand which circuit components are important for single neuron and network function.

Methods

We are addressing how different components of the visual cortex circuit give rise to its function using a combination of methods, including two-photon calcium imaging in anaesthetised and behaving mice, *in vitro* whole-cell recordings, *in vivo* whole-cell and extracellular recordings, optogenetics, visual behavioural tasks, and computational modelling.

Functional organisation of microcircuit connectivity in visual cortex

Determining how the organisation of neural circuitry gives rise to its function is a major challenge for understanding the neural basis of perception and behaviour. In order to determine how different regions of the neocortex process sensory information, it is necessary to understand how the pattern and properties of synaptic connections in a specific sensory circuit determine the computations it performs. We have begun forging the relationship between synaptic connectivity and neuronal function in primary visual cortex (V1) with the aim of revealing circuit-level mechanisms of sensory processing. To this end, my laboratory has developed a new method, by which visual response properties of neurons are first characterised with two-photon calcium imaging *in vivo*, and then synaptic connections between a subset of these neurons are assayed with multiple whole-cell recordings in slices of the same tissue (Ko, Hofer et al., 2011, Nature). Using this approach, we found that connection probability between nearby excitatory neurons is intimately related to the similarity of their responses to oriented stimuli and natural movies. This functionally organised pattern of local excitatory connections reveals the fine-scale specificity by which neurons may influence each other through local excitatory connections, and points to the existence of subnetworks dedicated to processing of related sensory information.

Interactions between excitatory and inhibitory neuronal populations

The capacity of the neocortex to process sensory information depends on neuronal interactions between excitatory and inhibitory cell types. However, the relationship between connectivity, receptive field properties and network dynamics of different cell types are not well understood. We have shown that the differences in connectivity between excitatory neurons and fast-spiking inhibitory (parvalbumin-expressing) interneurons in V1 influence the specificity by which these inhibitory subpopulations respond to sensory stimuli, and the extent to which their activity is influenced by visual input (Hofer, Ko et al., 2011, Nature Neuroscience).
Development of functional microcircuits
Using imaging in vivo, connectivity mapping in vitro and network modelling, we found that the functionally specific arrangement of connections in visual cortex is instructed by patterns of feedforward input after eye opening (Ko, Cossell et al., 2013, Nature, in collaboration with Sonja Hofer).

Current projects
» Functional circuit mapping: forging the relationship between the organization of excitatory and inhibitory synaptic connections and the detailed sensory response properties of neurons in visual cortex.

» Description of neuronal population dynamics during visual information processing in relation to excitatory and inhibitory cell types.

» Determining the influence of stimulus context, reward or expectation on neural representations in visual cortex, using electrophysiological recordings in single neurons and population imaging in behaving animals.

» Optogenetic manipulation of the circuit to investigate the impact of different neuronal classes and cortical areas in visual processing in anaesthetised and behaving mice.

» Building a biophysically realistic network model of the visual cortex microcircuit, relying on connectivity data and biophysical properties of cortical cell types (in collaboration with Angus Silver, University College London).

Publications 2017

We want to understand the dynamics of evolution and the forces that drive it. Evolution of plants and animals tend to happen over centuries of even longer time-scales. Microbial organisms, in contrast, often adapt to changing environments within weeks. We study such rapidly evolving systems to address fundamental questions in evolutionary biology. Among the most prominent rapidly adapting systems are pathogenic RNA viruses and the study of their evolution can help treatment or outbreak response as well as uncover fundamental mechanisms of evolution.

Real-time tracking and prediction of pathogenic RNA viruses
Seasonal influenza viruses cause 10s to 100s of millions of infections every year. While humans develop lasting immunity against particular influenza virus strains, the viruses change rapidly to evade preexisting immunity and reinfect the same individual multiple times. Similarly, the vaccine against seasonal influenza requires frequent updates to match the circulating viruses. Among the four seasonal influenza virus lineages, the type A/H3N2 changes its antigenic properties most rapidly. The HA segment alone changes at 5-10 of its 1700 positions every year.

To monitor the evolution and spread of seasonal influenza viruses, our group – together with the lab of Trevor Bedford – developed an automated analysis pipeline coupled to an interactive visualization available at the web page nextflu.org. This site is updated at least weakly with the latest available influenza virus sequence data such that public health authorities, scientists, as well as the interested public have access to the latest analysis. We have recently expanded these efforts to other viral pathogens including Ebola virus, Zika virus, Mumps, etc. These analysis are available at nextstrain.org.

The decision on the composition of the influenza vaccine needs to be taken close to year before the vaccine is rolled out. However, influenza population can change considerably over a year and methods to reliably predict future influenza population could potentially improve the match between vaccine and the circulating virus. Together with Boris Shraiman and Colin Russell, we have developed methods to predict fitness and hence future success from a single sample of genomes. This idea emerged from our theoretical study of abstract models of evolution but has immediate applications as a tool to predict influenza virus evolution. We have evaluated this method retrospectively on the influenza seasons 1995-2013 and have since been using it to predict composition of the upcoming influenza seasons. To enable rapid, near real-time phylogenetic analysis of large numbers of viral genomes, we have developed the software suite TreeTime. TreeTime implements an approximate maximum likelihood inference of time-stamped phylogenies and demographic models.
Intra-host dynamics and deep sequencing of HIV

Understanding the evolution of the virus is central to developing vaccines and to minimize drug resistance. In addition, HIV provides an ideal model system in which fundamental questions of evolution can be addressed. In contrast to most other model systems of evolution, time series data is available for HIV evolution which is much more informative about the evolutionary process than the snapshot typical of less rapidly evolving populations.

We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. This work was led by Fabio Zanini http://orcid.org/0000-0001-7097-8539 and is the product of a fruitful collaboration with the group of Jan Albert at the Karolinska Institute in Stockholm. http://ki.se/en/mtc/jan-albert-group We show that one third of common mutations are reversions towards the ancestral HIV-1 sequence which occur throughout infection with a rate that increases with conservation. Frequent recombination limits linkage disequilibrium to about 100 bp. However, hitch-hiking due to the remaining short range linkage causes levels of synonymous diversity to be inversely related to the speed of evolution (Zanini et al., 2015). All data we generated as part of this project are available at http://hiv.biozentrum.unibas.ch. We have used these data to estimate the fitness costs at every position of the HIV genome and infer the in vivo mutation rates of the virus (Zanini et al., 2017).

HIV not only evolves fast, but also integrates into the genome of human T-cells as latent provirus. Latent virus is the principal barrier to cure because latent virus reseeds an active HIV infection is therapy is stopped. It is therefore critical to understand how this latent reservoir is maintained. In particular, whether the virus constantly replicates in parts of the body with insufficient drug penetration or whether the virus survives in long-lived T-cell lineages is hotly debated.

We studied the evolution of HIV before and after therapy in great detail and find no evidence of consistent viral evolution after the start of therapy http://dx.doi.org/10.7554/elife.18889. To the contrary, virus isolated from the genome of human cells is an almost perfect snapshot of the virus that circulated right before therapy was initiated. The graph on the previous page shows that evolutionary distance the virus population diverged over time before and after therapy. Once therapy is started, there is no evidence of further evolution. Latently integrated HIV remains very similar to virus circulating before start of treatment.

Antibiotic resistance evolution

Pathogenic bacteria are increasingly resistant against many antibiotics we use to treat infections and resistance is developing into a serious complication of modern medicine. Matthias Willmann and Silke Peter from the Tübingen medical school and our group teamed up to study evolution of colistin resistance in clinical isolates of Pseudomonas aeruginosa using a morbidostat. This computer controlled continuous culture device was designed by Erdal Toprak and colleagues in Roy Kishony’s lab. The morbidostat adjust drug concentrations such that the bugs struggle but grow. Over days and weeks, the bacteria become resistant while we can take samples and sequence the population to track the changes in their genomes. Over 2-3 weeks, all replicate cultures became resistant via mutational pathways that are reproducible, but strain dependent (Regenbogen et al., AAC, 2017).

Bacterial pan-genomes and genome dynamics

In addition to vertical inheritance, bacteria exchange plasmids and genomic DNA horizontally. This mix of inheritance patterns make the analysis of bacterial evolution challenging and interesting. To come to grips the complexity of bacterial genomes, Wei Ding has developed a pipeline to reconstruct and visualize bacterial pan-genomes (Ding et al., 2017). The output of this tool is available for exploration at pangenome.ch. We are currently exploring different ways to construct, visualize, and comprehend the evolutionary laws governing bacterial diversity.

Rapid inference of time stamped phylogenies

Mutations that accumulate in the genome of replicating biological organisms can be used to infer their evolutionary history. In case of measurably evolving organisms genomes often reveal their detailed spatio-temporal spread. Such phylogenomic analyses are particularly useful to understand the epidemiology of rapidly evolving viral pathogens. The volume of genome sequences available for different pathogens, however, have increased dramatically over the last couple of years and traditional methods for phylodynamic analysis scale poorly with growing data sets. Pavel Sagulenko developed TreeTime, a python based framework for phylogenetic analysis using an approximate Maximum Likelihood approach. TreeTime can estimate ancestral states, infer evolution models, reroot trees to maximize temporal signals, estimate molecular clock phylogenies and population size histories. The run time of TreeTime scales linearly with data set size. TreeTime is available as open source package on github and as a web server at treetime.ch.
Publications 2017

Morris, Dylan H; Gostic, Katelyn M; Pompei, Simone; Bedford, Trevor (2017). Predictive modeling of influenza shows the promise of applied evolutionary biology. Trends in microbiology, 17.

Regenbogen, Bianca; Willmann, Matthias; Steglich, Matthias; Bunk, Boyke; Nübel, Ulrich; Peter, Silke; Neher, Richard A. (2017). Rapid and consistent evolution of colistin resistance in XDR Pseudomonas aeruginosa during morbidostat culture. Antimicrobial agents and chemotherapy, 61(9), e00043-17.

You, Yuan; Sawikowska, Aneta; Neumann, Manuela; Posé, David; Capovilla, Giovanna; Langenecker, Tobias; Neher, Richard A.; Krajewski, Pawel; Schmid, Markus (2017). Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. Nature Communications, 8, 15120.

Zanini, Fabio; Puller, Vadim; Brodin, Johanna; Albert, Jan; Neher, Richard A. (2017). In vivo mutation rates and the landscape of fitness costs of HIV-1. Virus Evolution, 3(1), vex003.
Cell proliferation depends on passage of cells through a series of biochemical reactions that are collectively termed “cell cycle”. This fundamental process is indispensable for the development of an entire organism from a single cell (fertilized egg), as well as the constant renewal of most cells throughout adult life. Key events during cell cycle progression include the duplication of the chromosomes (the genome) and their subsequent segregation to two nascent daughter cells. Chromosome segregation occurs during a cell cycle phase known as “mitosis”, a highly dynamic and spectacular stage of the cell cycle (Fig. 1). The main goal of our research is to elucidate the mechanisms that regulate mitosis in time and space and thereby ensure the error-free segregation of chromosomes. A better understanding of mitosis will hopefully illuminate the origins of the chromosome aberrations (aneuploidies) that give rise to birth defects and constitute hallmarks of aggressive human tumors.

Central to mitosis is the spindle apparatus, a complex and highly dynamic microtubule-based structure that captures chromosomes through specialized protein structures termed kinetochores (Fig. 2). Hence, we study the composition, regulation and dynamics of the mitotic spindle and kinetochores. In addition, we aim at elucidating the function of a surveillance mechanism – the spindle assembly checkpoint – that monitors the complete attachment of all mitotic chromosomes to the spindle.

At the two poles of the spindle apparatus are tiny organelles known as “centrosomes” (Fig. 3). The biogenesis, duplication and function of centrosomes (and their constituent centrioles) constitute a second major research focus of our laboratory. Centrosomes function to organize microtubule arrays in most animal cells and are present as only one or two copies per cell, depending on cell cycle stage. At the core of each centrosome are two microtubule-based cylindrical structures called “centrioles”, embedded in a matrix of pericentriolar proteins. Deregulation of the centrosome/centriole duplication cycle is believed to constitute a major cause of chromosome mis-segregation during the development of human cancers. Furthermore, certain brain diseases (notably microcephaly) and some forms of dwarfism have been causally linked to mutations in specific centrosomal proteins. Importantly, centrioles function also as basal bodies for the formation of cilia and flagella in quiescent cells, and mutations in genes coding for centriole/basal body proteins contribute to a multitude of diseases and syndromes (ciliopathies) that reflect the absence or malfunction of the basal-body/ciliary apparatus.
Our laboratory combines reverse genetics (e.g., RNA interference), immunocytochemistry (including structured illumination super-resolution microscopy) and multiple biochemical techniques (notably mass spectrometry) to unravel the molecular mechanisms that ensure correct centrosome duplication and chromosome segregation in human cells. Many of our studies focus on phosphorylation (a reversible protein modification controlled by kinases and phosphatases). Studying mostly human cells in culture, we have used mass spectrometry to establish inventories of proteins and phosphorylation sites in the spindle apparatus, the kinetochore and the centrosome. More recently, we focus on the wiring of key regulatory circuits, as defined by kinases, phosphatases, and selected substrates. We anticipate that our work will lead to a better understanding of the regulation of chromosome segregation and centrosome duplication in normal cells, as well as provide insights into the deregulation of these processes in disease.

In the recent past, we have discovered and characterized several novel spindle components and proteins implicated in centriole duplication. Of particular interest is our discovery of Plk4 as a key regulator of centriole biogenesis and the demonstration that a ternary complex of Ska proteins (Ska1, 2 and 3) plays a major role in stabilizing the attachment of spindle microtubules to kinetochores. Ongoing work concerns the function and regulation of several cell cycle-regulatory kinases, including Polo-like kinases (notably Plk1 and Plk4), Aurora kinases and spindle checkpoint kinases (Mps1 and Bub1).

One major challenge in contemporary biological and biomedical research concerns the development of technologies that will permit the acquisition of quantitative information about the abundance, localization and dynamics of proteins and protein modifications under physiological conditions. We anticipate that such technologies will become increasingly important not only in systems biology but in life science research altogether. Hence, we have optimized mass-spectrometry based procedures (selected reaction monitoring) that allow us to monitor, in quantitative terms, the abundance of key components involved in both centrosome duplication and chromosome segregation. In parallel, we have begun to use somatic gene targeting approaches that should allow us to visualize and quantify a subset of these very same components in time and space.

The cell cycle field holds considerable promise for the development of novel therapeutic approaches. In particular, it appears legitimate to hope that new information on the mechanisms that govern chromosome segregation and cell division will contribute to the design of novel strategies to thwart cancer growth. This has been widely recognized not only in Academia, but also in the Pharmaceutical and Biotechnology industry, providing ample opportunities for collaboration and translational research.

Fig. 3: Centrosomes organize microtubule arrays. A cultured human cell was co-stained with antibodies against the protein kinase Plk4, a key regulator of centriole duplication (green), and antibodies against the cytoskeletal component tubulin (red). Size bar: 5 μm.
Publications 2017

Pitchai, Ganesha P; Kaulich, Manuel; Bizard, Anna H; Mesa, Pablo; Yao, Qi; Sarlos, Kata; Streicher, Werner W; Nigg, Erich A; Montoya, Guillermo; Hickson, Ian D (2017). A novel TPR-BEN domain interaction mediates PICH-BEND3 association. *Nucleic acids research*, 12.

Domingues, Patrícia Henriques; Nanduri, Lalitha S. Y.; Seget, Katarzyna; Venkateswaran, Sharavan V.; Agorku, David; Viganó, Cristina; von Schubert, Conrad; Nigg, Erich A.; Swanton, Charles; Sotillo, Rocio; Bosio, Andreas; Storchová, Zuzana; Hardt, Olaf (2017). Cellular prion protein PRPC and ecto-5'-nucleotidase are markers of the cellular stress response to aneuploidy. *Cancer Research*, 77(11), 2914-2926.

Prof. Dr. Erich A. Nigg

At the beginning of 2018, Prof. Erich Nigg reached emeritus status.

Research Associate

Dr. Fabien Cubizolles

Postdoctoral Fellows

Dr. Christian Arquint
Dr. Emmanuel Gallaud
Dr. Olivier Ganier
Dr. Conrad-Eberhard von Schubert

PhD Student

Cristina Vigano

Administrative Assistant

Nadine Iberl

Technical Associate

Elena Nigg-Martignoni
Bacterial infections represent a major public health problem of broad concern, augmented by increasing occurrence of strains resistant to antibacterial agents. In order to develop new chemotherapeutic strategies to overcome infections, it is necessary to understand fundamental processes relevant for bacterial survival in detail.

The cell wall is an antibacterial target

The bacterial cell wall exerts important protective functions against host defenses and antibiotics; its biogenesis is a preferred target for the development of antibacterial agents because it includes several essential pathways for virulence and survival. Despite its great importance, structural, mechanistic and fundamental biochemical aspects of many proteins participating in its biosynthesis are scarce.

Mechanistic basis of cell wall biogenesis

Our research combines *in vitro* and *in vivo* activity assays, together with high-resolution structures of membrane proteins important for several cell wall biochemical pathways, with the aim to provide an understanding of their molecular mechanisms and describe potential modes of activity modulation and inhibition.

Hydrophilic channel inside the core of a membrane embedded protein.

Publications 2017

Perez, Camilo; Köhler, Martin; Janser, Daniel; Pardon, Els; Steyaert, Jan; Zenobi, Renato; Locher, Kaspar P. (2017). Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. *Scientific Reports*, 7, 46641.
Our laboratory is investigating how immune cells integrate input signals from the environment to initiate responses towards pathogenic stimuli. Such stimuli can originate from invading microbes, potentially causing infections, or, alternatively, from self-tissue causing autoimmunity. One model system that we are studying is the interaction of \textit{M. tuberculosis} with host cells. \textit{M. tuberculosis} is arguably one of the most successful pathogens on earth, having evolved a plethora of strategies to subvert host immunity. We have uncovered several mechanisms that are utilized by \textit{M. tuberculosis} to avoid intracellular killing within macrophages; one of these mechanisms is based on the hijacking by \textit{M. tuberculosis} of host signal transduction via the protein coronin 1. Interestingly, we found that coronin 1 is also crucial for peripheral T cell homeostasis in mice and humans and we are investigating the mechanism of action underlying coronin 1-dependent T cell homeostasis.

Interaction of \textit{M. tuberculosis} with host macrophages

The pathogen \textit{M. tuberculosis}, the causative agent of tuberculosis, is one of the most virulent pathogens known, with only a few bacilli sufficient to cause disease in an infected individual. One reason for the extreme virulence of \textit{M. tuberculosis} is their exquisite capacity to withstand the microbicidal environment of the macrophage. Our laboratory has contributed to the elucidation of a number of such strategies, that include the utilization of both bacterial-derived factors as well as host-derived molecules for the protection of \textit{M. tuberculosis} within macrophages. An example of a bacterium-derived survival factor is the mycobacterial serine/threonine protein kinase G (PknG). How, exactly, PknG mediates the intracellular survival of \textit{M. tuberculosis} remains unclear and we are currently establishing systems to analyze its molecular function during an infection in macrophages.

As for host factors hijacked by \textit{M. tuberculosis}, we are investigating the mechanisms of action via which the protein coronin 1 modulates mycobacterial survival within macrophages. Through analyses using \textit{in vitro} and \textit{in vivo} model systems, we have shown a role for coronin 1 in the modulation of the Ca$^{2+}$/calcineurin pathway, thereby preventing the destruction of mycobacteria within macrophages (see Fig. 1). Also, recent work from the laboratory suggests that upon inflammatory stimuli, coronin 1 activates phosphoinositol (PI)-3-kinase in order to induce the rapid elimination of pathogens.

Coronin 1 signaling in leukocytes

A surprising finding was that the absence of coronin 1 results in a virtual depletion of peripheral T cells, suggesting that coronin 1 is essential for the maintenance of T lymphocytes in peripheral lymphoid organs.

We found that similar to its role in infected macrophages, coronin 1 is essential for the modulation of Ca$^{2+}$/calcineurin signaling thereby regulating T cell homeostasis. As a consequence, in both mouse and humans, mutations in coronin 1 are associated with a profound depletion of naïve T cells in peripheral lymphoid organs (see Fig. 2). In contrast to the profound T cell defects in the periphery, all T cell populations and selection processes appear to be undisturbed in the thymus. Interestingly, the absence of coronin 1 results in resistance towards a variety of autoimmune stimuli. Ongoing studies are aimed at understanding the role for coronin 1 in the regulation of naïve T cell homeostasis.

Fig. 1: The role of coronin 1 in the survival of \textit{M. tuberculosis} within macrophages. Following the infection of macrophages with \textit{Mycobacterium tuberculosis}, coronin 1 is recruited and retained at the phagosomal membrane, where it activates calcium-calcineurin signalling. Activated calcineurin blocks the delivery of \textit{M. tuberculosis} to lysosomes, probably by dephosphorylating an unknown host cell substrate. This facilitates the long-term survival of \textit{M. tuberculosis} within phagosomes. Modified from Nature Review Immunology, 2013.
Fig. 2: The role of coronin 1 in the survival of naïve T cells. (A) T cells (stained in red) are absent from the cervical lymph nodes of coronin 1-deficient mice, whereas the numbers of B cells (stained in green) remain unaffected after coronin 1 depletion. Cell nuclei are stained in blue. (B) The impaired survival of naïve T cells in the periphery of coronin 1-deficient mice might result from defective calcium mobilization downstream of tonic T cell receptor (TCR) signalling in these T cells. Impaired calcium signalling prevents the activation of calcineurin, which is essential for the expression of pro-survival proteins, such as B cell lymphoma 2 (BCL-2). CRAC, calcium release activated channel; ER, endoplasmic reticulum; Ins(1,4,5)P₃, inositol-1,4,5-trisphosphate; Ins(1,4,5)P₃R, Ins(1,4,5)P₃ receptor; NFAT, nuclear factor of activated T cells; PLCγ₁, phospholipase Cγ₁; STIM1, stromal interaction molecule 1. From: Nature Reviews Immunology, 2013.

A conserved pathway sensing cell surface stimulation?

Coronin 1 is one of seven coronin molecules expressed in mammalian cells; whether or not there is redundancy among the different coronins remains unknown.

We have initiated a project in which we analyze the role of the coronin 1 homologue in the lower eukaryote *Dictyostelium discoideum*, that expresses only a single short coronin isoform. It turns out that in *Dictyostelium*, coronin is required for the initiation of the developmental processes such as multicellular aggregation upon starvation, that involves activation of the cAMP/protein kinase A pathway. Current work aims to unravel the molecular details of the coronin-mediated activation of the cAMP/PKA pathway leading to *Dictyostelium* multicellular development. Concurrently, we are also investigating new genetic players and molecular pathways involved in *Dictyostelium* multicellular development.

Fig. 3: In the absence of coronin, *Dictyostelium discoideum* fails to initiate multicellular aggregation upon starvation (Vinet et al., MoBC 2014).

Lang, Mathias; Mori, Mayumi; Ruer-Laventie, Julie; Pieters, Jean (2017). A coronin 1-dependent decision switch in juvenile mice determines population of the peripheral naïve T cell compartment. *Journal of Immunology*, 199(7), 2421-2431.
The overall research topic concerns the molecular mechanisms important for the function and dysfunction of synapses at the neuromuscular junction (NMJ) and between neurons in the brain (Fig. 1). Pathological changes at the NMJ, as for example seen in myasthenia gravis (Fig. 2) or muscle dystrophies (Fig. 3), impair muscle function and can be life-threatening. Our group investigates different signaling pathways important for the establishment and function of synapses. Using this knowledge, we also try to find new ways to treat pathological alterations at the NMJ and in skeletal muscle. All these projects synergize with each other as we are using the same systems to answer related questions.

The role of mTORC1 and mTORC2 in brain and skeletal muscle

Both, neurons and skeletal muscle fibers are postmitotic and thus their growth largely depends on changes in cell size and not cell number. The mammalian target of rapamycin (mTOR), which was discovered in yeast by Michael Hall and collaborators, assembles into two multiprotein complexes called mTOR complex 1 (mTORC1) and mTORC2. The two complexes are characterized by the presence of particular proteins that are necessary for their function, such as raptor (mTORC1) and rictor (mTORC2). While mTORC1 is inhibited by the immunosuppressant rapamycin, mTORC2 is not inhibited by this drug. We are investigating the role of mTORC1 and mTORC2 in brain and skeletal muscle in mice using the Cre/loxP technology. In both tissues, deletion of mTORC1 causes the organ to be smaller. In the brain, mTORC1 is essential for brain development while mTORC2 mutants survive. In the brain, mTORC2 deficiency causes a strong decrease in its size and the mice display behavioral abnormalities. Neurons show deficits in dendritic arborization and synaptic circuitry. We are currently investigating the detailed molecular mechanisms underlying these phenotypes as well as the function of mTORC1 and mTORC2 at adult synapses.

Like in the brain, mTORC1 deletion in skeletal muscle results in a more severe phenotype than mTORC2 deletion. Here, mTORC2 deletion does not cause any overt phenotype whereas mTORC1 mutation affects the metabolism and function of skeletal muscle. Importantly, mTORC1 deficiency causes a severe myopathy and leads to the death of the mice at the age of 4 to 6 months. Moreover, the mice display a general wasting syndrome that is not restricted to skeletal muscle. Current projects study the mechanisms that trigger this wasting and investigate the contribution of mitochondrial biogenesis to the overall phenotype. In addition, we examine the effect of activating mTORC1 in skeletal muscle by the deletion of its inhibitor TSC1.

Fig. 1: Comparison of neuromuscular junctions and synapses in the brain. (A) At the NMJ, the presynaptic motor nerve, visualized by the staining with antibodies to neurofilament and synaptophysin (red), perfectly matches the postsynaptic structure, stained with an agent that binds to acetylcholine receptors. (B) At neuron-to-neuron synapses, actin (yellow) is highly enriched at postsynaptic spines on the dendrites of cultured hippocampal neurons (green). Thus, the structure of synapses is similar at the NMJ and at neuron-to-neuron synapses but there is a big difference in size. Scale bars = 10 µm.
Copine 6, a novel calcium sensor involved in synapse structure

Changes in synaptic activity alter synaptic transmission and ultimately change neuronal network dynamics. Structural changes induced by electrical activity are often mediated by calcium-dependent processes. Initiated by gene expression studies at the NMJ, we focus on the function of Copine 6, a member of a small family of calcium-binding proteins. We have shown that Copine 6 affects spine formation and maintenance in hippocampal neurons. Copine 6 shuttles from the cytosol to postsynaptic sites upon NMDA receptor-dependent calcium influx. It binds to the Rho GTPase Rac1 and mediates its translocation to membranes upon calcium influx. These results strongly suggest that Copine 6 serves as a calcium sensor that links neuronal activity to the subsequent changes in synaptic structure. In the current projects, we investigate the function of Copine 6 and additional family members in vivo and we try to identify additional binding partners.

NMJ and disease

There are sporadic and genetic neuromuscular diseases (NMDs). Although they are often severe, they affect only a small proportion of the human population and most of the diseases are still not treatable. One of the acquired NMDs is myasthenia gravis that is caused by auto-immune antibodies directed to components of the NMJ. While most of the antibodies are directed against the acetylcholine receptor, in about 10% of the cases antibodies are directed against the receptor tyrosine kinase MuSK. Interestingly, the clinical symptoms are clearly distinct between the two subgroups. We have recently shown that the phenotypic difference between the two subtypes of myasthenia gravis can also be reiterated in a murine model of experimental autoimmune myasthenia gravis (EAMG). The symptoms in MuSK-EAMG mice are a severe kyphosis, weight loss and signs of neuromuscular hyperactivity, which are all distinct from the symptoms in EAMG induced by acetylcholine receptor antibodies. At the NMJs, MuSK-EAMG causes fragmentation and often loss of innervation (Fig. 2). Interestingly, like in human patients, the pathological changes observed at NMJs differ between muscles. Current studies aim at elucidating the molecular mechanisms that are responsible for this difference between muscles.

Another set of NMDs are muscular dystrophies, where the skeletal muscle fibers and not the NMJs are affected. Although the mutations causing muscular dystrophies are distinct, the severe loss of muscle mass due to the degeneration of muscle...
fibers is common to all diseases. As a consequence, muscle becomes replaced by fibrotic tissue (Fig. 3A). In one project we develop new methods to treat some of the muscular dystrophies in experimental mouse models. For example, we have recently shown that transgenic expression of a miniaturized form of the extracellular matrix molecule agrin (mini-agrin) can substantially compensate for the loss of laminin-211. This compensation is even more complete when cell death of muscle fibers is prevented by additionally expressing the anti-apoptotic protein Bcl2 (Fig. 3B) or treating mice with the anti-apoptotic agent omigapil. Such combination therapy restores the structure of the muscle to control levels (Fig. 3C). In current projects we test additional pharmacological agents for their potential to ameliorate the disease.

Publications 2017

Karakatsani, Andromachi; Marichal, Nicolás; Urban, Severino; Kalamakis, Georgios; Ghanem, Alexander; Schick, Anna; Zhang, Yina; Conzelmann, Karl-Klaus; Ruegg Markus A.; Berninger, Benedikt; Ruiz de Almodovar, Carmen; Gascón, Sergio; Kröger, Stephan (2017). Neuronal LRP4 regulates synapse formation in the developing CNS. Development (Cambridge, England), 144(24), 4604-4615.

Blandino-Rosano, Manuel; Barbaresco, Rebecca; Jimenez-Palomares, Margarita; Bozadjieva, Nadejda; Werneck-de-Castro, Joao Pedro; Hatanaka, Masayuki; Mirmira, Raghavendra G.; Sonenberg, Nahum; Liu, Ming; Ruegg, Markus A.; Hall, Michael N.; Bernal-Mizrachi, Ernesto (2017). Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nature Communications, 8, 16014.

Reinhard, Judith R.; Lin, Shuo; McKee, Karen K.; Meinen, Sarina; Crosson, Stephanie C.; Sury, Maurizio; Hobbs, Samantha; Maier, Geraldine; Yurchenco, Peter D.; Ruegg, Markus A. (2017). Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Science Translational Medicine, 9(396), eaal4649.

Willmann, Raffaella; Gordish-Dressman, Heather; Meinen, Sarina; Ruegg, Markus A.; Yu, Qing; Nagaraju, Kanneboyina; Kumar, Ayar; Girgenrath, Mahasweta; Coffey, Caroline B. M.; Cruz, Vivian; Van Ry, Pam M.; Bogdanik, Laurent; Lutz, Cathleen; Rutkowski, Anne; Burkin, Dean J. (2017). Improving reproducibility of phenotypic assessments in the DyW mouse model of laminin-α2 related congenital muscular dystrophy. Journal of Neuromuscular Diseases, 4(2), 115-126.
The goal of research in the Scheiffele Lab is to understand molecular mechanisms underlying the formation of neuronal circuits in health and disease. Synapses are the key processing units in neuronal circuits. Therefore, we are examining mechanisms of synapse formation and synaptic rearrangements in the central nervous system. We are exploring the trans-synaptic signals that coordinate the choice of synaptic partners, assembly of synaptic junctions and stabilization of appropriate contacts.

Coupling of postsynaptic neurotransmitter complexes to synaptic adhesion molecules

Synaptic adhesion molecules have important roles in organizing synaptic structures. In the past years we have focused on one pair of synaptic adhesion molecules called the neurexin-neuroligin complex which spans the synapse and contributes to the organization of pre- and postsynaptic membrane compartments. In cell biological studies we identified a novel mode of lateral coupling between neurexins and neurotransmitter receptors in the postsynaptic membrane. We demonstrated that neurexin-1 recruits NMDA-type glutamate receptors through interactions via the extracellular domains of the protein. These interactions are critical for physical retention of a pool of NMDA-receptors at glutamatergic synapses in vivo and regulate NMDA-receptor-dependent synaptic plasticity in the mouse hippocampus (Budreck et al., PNAS, 2013). These findings highlight the possibility that neurotransmitter receptors and adhesion molecules assemble into complexes that have structural roles at central synapses.

Molecular diversification of recognition molecules by alternative splicing

Neuronal networks in the mammalian brain represent one of the most complex examples of a highly organized biological system. The finite number of protein-coding genes in the human genome severely limits the genetic resources that can be employed for generating molecular diversity. Therefore, highly polymorphic cell surface receptor families arising from extensive alternative splicing provide attractive candidates for neuronal recognition. Neurexins are highly polymorphic synaptic cell surface receptors that are extensively modified by alternative splicing. Alternative splice variants of neurexins differ in biochemical interactions with neureligins and other binding partners and may underlie an adhesive code at central synapses. We discovered that neurexin alternative splicing is regulated by neuronal activity. The KH-domain RNA-binding protein SAM68 binds directly to the neurexin-1 pre-mRNA and is essential for activity-dependent splicing regulation (Iijima et al., Cell, 2011). SAM68-like proteins (SLM1 and SLM2) exhibit highly selective expression patterns in interneuron populations in the mouse brain. These findings provide an entry point to unraveling the cell type-specific neurexin repertoires and their contribution to neuronal connectivity.

Synaptic defects in autism-spectrum disorders

Autism-spectrum disorders are amongst the most heritable neurodevelopmental disorders known to date. Human genetic studies conducted over the past 10 years have led to the identification of several candidate genes that may confer susceptibility to autism but also environmental risk factors might exist. The study of neuronal circuit alterations in autism has been most advanced for monogenic forms of syndromic autism, such as Fragile X and Rett’s Syndrome, where specific alterations in synaptic transmission have been identified. We focused our studies on a mouse model of a non-syndromic form of autism, carrying a mutation in the synaptic adhesion molecule neuroligin-3. Using a combination of electrophysiological, anatomical, and behavioral studies we identified a remarkable convergence in the synaptic pathophysiology in neuroligin-3 knock-out mice and a rodent model of Fragile X, characterized by a defect in metabotropic glutamate recep-
tor-dependent synaptic plasticity. Importantly, the synaptic defects could be reversed by re-expression of neuroligin-3 in adult animals highlighting a substantial reversibility of the neuronal phenotypes in this model (Baudouin et al., Science, 2012). In ongoing studies we are now testing pharmacological interventions in transgenic mouse and rat models of autism to identify treatment strategies for the disorder.

Emergence of synaptic specificity in the pontocerebellar projection system
A key question in neural development is how axons choose their appropriate synaptic partners. We performed a detailed anatomical analysis to unravel how target specificity of pontocerebellar mossy fiber projections emerges during development. We observed that mossy fibers form transient synapses with Purkinje cells (an “inappropriate target”) before precise connectivity with granule cells is established. We discovered that Purkinje cell-derived bone morphogenetic protein 4 (BMP4) acts as a retrograde signal that drives the destabilization of mossy fiber contacts (Kalinovsky et al., PLoS Biology, 2011). Interestingly, the bone morphogenetic protein signaling pathway continues to be active in the adult cerebellum. Therefore, we are now examining functions of this signaling system in learning-dependent plasticity in mature cerebellar circuits.

Publications 2017
Tora, David; Gomez, Andrea M; Michaud, Jean-Francois; Yam, Patricia T; Charron, Frédéric; Scheiffele, Peter (2017). Cellular functions of the autism risk factor PTCHD1 in mice. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 37(49), 11993-12005.

We are employing crystallographic and biochemical/biophysical techniques to reveal the structural basis for the catalysis and regulation of c-di-GMP related proteins. Our second focus is on bacterial type IV secretion system (T4SS) effector proteins with AMP transferase activity.

Recently, we have started to elucidate the structures and binding modes of newly discovered c-di-GMP receptors. Amongst these, there are c-di-GMP regulated histidine kinases (see below) and a re-purposed TIM barrel structure that is capable of binding c-di-GMP as well as ppGpp with inverse downstream effects. The investigations will contribute to our knowledge of the complete c-di-GMP signal cascade.

c-di-GMP regulated histidine kinases
Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We are studying the regulation and the structure of the bifunctional histidine kinase CckA from *C. crescentus* and were able to reveal the mechanism that allows c-di-GMP to switch the enzyme from its default kinase to the phosphatase state. Non-covalent domain cross-linking by c-di-GMP freezes the protein in a domain constellation that allows docking and dephosphorylation of the target Rec domain, but prevents movement of

Make, break and recognition of c-di-GMP
Recent discoveries show that a novel second messenger, c-di-GMP, is extensively used by bacteria to control multicellular behavior, such as biofilm formation. Condensation of two GTP to the dinucleotide is catalyzed by GGDEF domains that usually occur in combination with sensory and/or regulatory modules. The opposing phosphodiesterase activity is provided by EAL domains that are similarly regulated.

In collaboration with the Jenal group (Biozentrum) and based on crystallographic and functional studies, we have studied the catalytic and regulatory mechanisms of diguanylate cyclases, the enzymes that synthesize the second messenger. It appears that the general mechanism of activation relies on signal induced dimerization of its regulatory domains that ensures productive encounter of the two GTP loaded catalytic GGDEF domains. Currently, we are studying the molecular basis of phosphodiesterase regulation that are the antagonistic enzymes that degrade c-di-GMP. Although the active site is completely contained within their EAL domain, the domain is active only as a homodimer. This generic property of the catalytic domain is probably utilized in many of the full-length proteins to control their activity, very much the same as in diguanylate cyclases. Thus, our results provide clues about how this class of enzymes can be regulated in a modular and universal fashion by their sensory domains.
the CA domain relative to the dimeric DHp stem required for auto-phosphorylation. Sequence comparisons suggest that c-di-GMP regulation is wide-spread amongst bacterial histidine kinases.

Regulation of AMP transferases with Fic fold
Type IV secretion systems (T4SS) are utilized by many bacterial pathogens for the delivery of virulence proteins or protein-DNA complexes into their eukaryotic target cells. Together with the Dehio group (Biozentrum) we are working on a class of effector proteins that are composed of a Fic and a BID domain responsible for pathogenic action in the host cell (AMPylation of specific target proteins) and translocation, respectively.

Based on crystallographic analyses, we have found that Fic proteins are expressed in an inhibited form and are, thus, catalytically silent under normal circumstances. Inhibition is caused by partial obstruction of the ATP binding site by a helix that, depending on the Fic class, is provided by a cognate antitoxin or is part of the enzyme itself. For the latter class, we have shown that auto-inhibition can get relieved by auto-modification of a tyrosine residue of this helix. We are interested in the structural basis of target recognition and, particular, target specificity. This knowledge may be utilized for drug development to target Fic proteins of bacterial pathogens.

Crystal structure of Fic protein VbhT in complex with anti-toxin VbhA (blue). Also shown is the ATP substrate (with electron density). Adopted from Engel et al., 2012.

Prof. Dr. Tilman Schirmer
» further information

Postdoctoral Fellows
Dr. Raphael Dias Teixeira
Dr. Nikolaus Dietz born Schmitz
Dr. Badri Nath Dubey

PhD Students
Markus Huber
Johanna Rueher
Stefanie Tamegger

Master Student
Elia Agustoni

Administrative Assistant
Alexandra Eberhardt

Technical Associate
Susanne Flister

Publications 2017

Nesper, Jutta; Hug, Isabelle; Kato, Setsu; Hee, Chee-Seng; Habazettl, Judith Maria; Manfredi, Pablo; Grzesiek, Stephan; Schirmer, Tilman; Emonet, Thierry; Jenal, Urs (2017). Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife, 6, 6:e28842.

Stanger, Frédéric V.; de Beer, Tjaart A. P.; Dranow, David M.; Schirmer, Tilman; Phan, Isabelle; Dehio, Christoph (2017). The BID domain of type IV secretion substrates forms a conserved four-helix bundle topped with a hook. Structure, 25(1), 203-211.
Protein structure modeling
The main interest of my group is the development of methods and algorithms for molecular modeling and simulations of three-dimensional protein structures and their interactions. One of the major limitations for using structure-based methods in biomedical research is the limited availability of experimentally determined protein structures. Prediction of the 3D structure of a protein from its amino acid sequence remains a fundamental scientific problem, and it is considered as one of the grand challenges in computational biology. Comparative or homology modeling, which uses experimentally elucidated structures of related protein family members as templates, is currently the most accurate and reliable approach to model the structure of the protein of interest. Template-based protein modeling techniques exploit the evolutionary relationship between a target protein and templates with known experimental structures, based on the observation that evolutionarily related sequences generally have similar 3D structures.

Mean force potentials for model quality estimation
Ultimately, the quality of a model determines its usefulness for different biomedical applications such as planning mutagenesis experiments for functional analyses or studying protein-ligand interactions, e.g. in structure based drug design. The estimation of the expected quality of a predicted structural model is therefore crucial in structure prediction. Especially when the sequence identity between target and template is low, individual models may contain considerable errors. To identify such inaccuracies, scoring functions have been developed which analyze different structural features of the protein models in order to derive a quality estimate. To this end, we have introduced the composite scoring function QMEAN, which consists of four statistical potential terms and two components describing the agreement between predicted and observed secondary structure and solvent accessibility.

We have shown that QMEAN can not only be used to assess the quality of theoretical protein models, but also to identify experimental structures of poor quality. Specific potentials for trans-membrane regions are required for the correct assessment of TM proteins such as receptors and channels. As membrane proteins play crucial roles in many biological processes and are important drug targets, QMEANBrane further extends our approach to membrane protein structures. Recently, we have also developed an approach for dynamically combining the knowledge-based statistical potentials of QMEAN with distance constraints derived from homologous template structures (QMEANDisCo). This method significantly increases the accuracy of the local per-residue quality estimates at a relatively small computational cost.
CASP and CAMEO: Critical assessment of structure prediction methods

Methods for structure modeling and prediction have made substantial progress of the last decades, but still fall short in accuracy compared to high-resolution experimental structures. Retrospectively assessing the quality of a blind prediction in comparison to experimental reference structures allows benchmarking the state-of-the-art in structure prediction and identifying areas which need further development. The Critical Assessment of Structure Prediction (CASP) experiment has for the last 20 years assessed the progress in the field of protein structure modeling based on predictions for ca. 100 blind prediction targets which are carefully evaluated by human experts. The “Continuous Model EvaluatiOn” (CAMEO) project aims to provide a fully automated blind assessment for prediction servers based on weekly pre-released sequences of the Protein Data Bank PDB. CAMEO requires the development of novel scoring methods such as lDDT, which are robust against domain movements to allow for automated continuous operation without human intervention. CAMEO is currently assessing predictions of 3-dimensional structures, ligand binding sites, and model quality estimation.

Structure-guided protein engineering and in vitro evolution of enzymes

Three-dimensional models of proteins are valuable tools for the design of protein engineering and in-vitro evolution experiments. In the following, some exemplar projects involving molecular modeling of protein-ligand interactions at different levels of model resolution are briefly presented.

Conjugate vaccines in which polysaccharide antigens are covalently linked to carrier proteins belong to the most effective and safest vaccines against bacterial pathogens. The current production process of conjugate vaccines is a laborious, chemical multistep process. The discovery of N-glycosylation in bacteria allows for protein glycosylation in recombinant bacteria by expressing the N-oligosaccharyltransferase PglB of Campylobacter jejuni in Escherichia coli. In a collaboration with GlycoVaxyn AG (Schlieren) and EMPA (St. Gallen) on a project funded by the KTI we successfully engineered the specificity of a recombinant PglB enzyme for production of novel conjugate vaccines in E.coli.

Other projects involve studying Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE and the implications of metal heterogeneity for evolution and anti-biotic drug design (Marc Creus), or the design of protein kinases with altered substrate specificity.

Comparison of a predicted two-domain protein structure model (colored according lDDT score) with its reference structure (shown in gray). The model is shown in full length (A), with the first domain superimposed to the target. For graphical illustration, (B) shows the two domains in the prediction separated and superimposed individually to the target structure. (Bioinformatics, 2013, 29:2722-2728).

The N-oligosaccharyltransferase PglB is used for linking polysaccharide antigens to carrier proteins in the recombinant production of conjugate vaccines.
Publications 2017

Haas, Jürgen; Barbato, Alessandro; Behringer, Dario; Studer, Gabriel; Roth, Steven; Bertoni, Martino; Mostaguir, Khaled; Gumienny, Rafal; Schwede, Torsten (2017). Continuous automated model evaluation (CAMEO) complementing the critical assessment of structure prediction in CASP12. *Proteins*, epub ahead of print.

Lafita, Aleix; Bliven, Spencer; Kryshtafovych, Andriy; Bertoni, Martino; Monastyrskyy, Bohdan; Duarte, Jose M; Schwede, Torsten; Capitani, Guido (2017). Assessment of protein assembly prediction in CASP12. *Proteins*, epub ahead of print.

Kryshtafovych, Andriy; Albrecht, Reinhard; Baslé, Arnaud; Bule, Pedro; Caputo, Alessandro T; Carvalho, Ana Luisa; Chao, Kinlin L; Diskin, Ron; Fidelis, Krzysztof; Fontes, Carlos M G A; Fredslund, Folmer; Gilbert, Harry J; Goulding, Celia W; Hartmann, Marcus D; Hayes, Christopher S; Herzberg, Osnat; Hill, Johan C; Joachimiak, Andrzej; Kohring, Gert-Wieland; Koning, Roman I; Lo Leggio, Leila; Mangiagalli, Marco; Michalska, Karolina; Moult, John; Najmudin, Shabir; Nardini, Marco; Nardone, Valentina; Ndeh, Didier; Nguyen, Thanh H; Pintacuda, Guido; Postel, Sandra; van Raaij, Mark J; Roversi, Pietro; Shimon, Amir; Singh, Abhimanyu K; Sundberg, Eric J; Tars, Kaspar; Zitzmann, Nicole; Schwede, Torsten (2017). Target highlights from the first post-PSI CASP experiment (CASP12, May-August 2016). *Proteins*, epub ahead of print.

Sprecher, Kathrin S.; Hug, Isabelle; Nesper, Jutta; Potthoff, Eva; Mahi, Mohamed-Ali; Sangermani, Matteo; Kaever, Volkhard; Schwede, Torsten; Vorholt, Julia; Jenal, Urs (2017). Cohesive properties of the Caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein. mBio, 8(2), e00294-17.

Romano, Valentina; de Beer, Tjaart A. P.; Schwede, Torsten (2017). A computational protocol to evaluate the effects of protein mutants in the kinase gatekeeper position on the binding of ATP substrate analogues. BMC Research Notes, 10(1), 104.

Bienert, Stefan; Waterhouse, Andrew; de Beer, Tjaart A. P.; Tauriello, Gerardo; Studer, Gabriel; Bordoli, Lorenza; Schwede, Torsten (2017). The SWISS-MODEL repository – new features and functionality. Nucleic Acids Research, 45(D1), D313-D319.

Glusman, Gustavo; Rose, Peter W.; Prlić, Andreas; Dougherty, Jennifer (2017). Mapping genetic variations to three-dimensional protein structures to enhance variant interpretation: A proposed framework. Genome Medicine, 9(1), 113.

Daina, Antoine; Blatter, Marie-Claude; Baillie Gerritsen, Vivienne; Palagi, Patricia M.; Marek, Diana; Xenarios, Ioannis; Schwede, Torsten; Michielin, Olivier; Zoete, Vincent (2017). Drug design workshop: A web-based educational tool to introduce computer-aided drug design to the general public. Journal of Chemical Education, 94(3), 335-344.

Heck, Angela; Milnik, Annette; Vukojevic, Vanja; Petrovska, Jana; Egli, Tobias; Singer, Jochen; Escobar, Pablo; Sengstag, Thierry; Coynel, David; Freytag, Virginie; Fastenrath, Mathias; Demougin, Philippe; Loos, Eva; Hartmann, Francina; Schicktanz, Nathalie; Delarue Bizzini, Bernardo; Vogler, Christian; Kolassa, Iris-Tatjana; Wilker, Sarah; Elbert, Thomas; Schwede, Torsten; Beisel, Christian; Beerenwinkel, Niko; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas (2017). Exome sequencing of healthy phenotypic extremes links TROVE2 to emotional memory and PTSD. Nature Human Behaviour, 1, 0081.
Asymmetry is an inherent property of most cells. Proteins and mRNA have to be distributed at specific cellular locales to perform their assigned function or to be translated in a spatially and temporally regulated manner. Although the localization of mRNAs is restricted to the cytoplasmic face of intracellular organelles or the plasma membrane, proteins and lipids have to be localized to these organelles to provide a platform on which mRNAs and/or proteins can be recruited and form a domain or a small compartment. In general this compartmentalization is achieved by intracellular transport through exocytic (secretory pathway) and endocytic avenues. Communication between different organelles is maintained in large parts by transport vesicles and direct contact sites. While the transport vesicles transport proteins and lipids, the contact sites are places for ion and lipid exchange. These different kinds of communications not only are essential for cell asymmetry establishment and maintenance they further allow to mount a rapid cellular response in case of stress.

Our research interests center around questions like: how intracellular traffic regulates cellular asymmetry and stress response. How do RNA localization, translation and metabolism contribute to asymmetry and defense against stressors. To answer these questions we take advantage of different model systems such as yeast, C. elegans and tissue culture to enable us to study these problems from the single cell to organ and animal level.

The regulation transport along the secretory pathway

In order to understand how microdomains or compartments are formed on different organelles and the plasma membrane, we have to understand how proteins reach their specific compartments. Therefore, we study on one hand the formation of transport containers at different levels of the secretory pathway. Since the formation of transport containers is mostly dependent on the small GTPase Arf1, we study its regulation through ArfGEFs and ArfGAPs (Ackema et al., 2013, 2014, Estrada et al., 2014, Spang et al., 2010, Spang 2009, 2013). Activated Arf1 will interact with adaptor complexes and coat components that will on one hand recruit the cargo that needs to be transported and on the other hand deform the donor membrane to allow the generation of a transport vesicle. We have identified a novel adaptor complex, exomer, which only transport a subset of proteins from the trans-Golgi network (TGN) to the plasma membrane (Trautwein et al., 2006, Zanolari et al., 2010, Rockenbauch et al., 2012, Spang 2015, Huranova et al., in press). Yet the cargoes are all exquisitely regulated in terms polarized localization through the cell-cycle and upon stress response (Zanolari et al., 2010, Ritz et al., 2014). One of the cargoes, Pin2, contains a prionlike domain, which serves as a TGN retention signal, in particular under stress conditions (Ritz et al., 2014). The prion-like aggregates may also serve to sequester other cargo proteins, hence providing a novel mechanism for compartmentalization and domain formation.

Fig. 1: The architecture of the Golgi is disturbed upon knockdown of the small GTPases RAB-5 and ARF-1. Worms expressing the Golgi marker UGTP-1::GFP (green) under the pie-1 promoter, which drives expression in the gonad and in early embryos were subjected to RNAi by feeding. The distribution of UGTP-1::GFP was analyzed by confocal microscopy. The Golgi morphology was greatly altered upon RNAi against RAB-5 and ARF-1. In particular, arf-1(RNAi) led to a dispersal of Golgi structures.
The regulation of early-to-late endosomal transport

However not only export to the plasma membrane is essential for maintaining cell polarity and asymmetry, the endocytic route plays an equally important role. We have identified a factor, SAND-1/Mon1, which acts as a switch in early to late endosome maturation by on one hand displacing the GEF for the early endosomal GTPase RAB-5, RABX-5, from early endosome and by actively recruiting the late endosomal GTPase RAB-7 onto the maturing endosome (Poteryaev and Spang 2005, Poteryaev et al., 2007, 2010). With these results, we demonstrated the existence of endosome maturation. But then the next question is how is maturation regulated? Rab conversion from RAB-5 to RAB-7 positive endosomes is an important but not the only step along the maturation process. We are studying currently how recycling and sorting, pH and lipid changes, interactions with the cytoskeleton, incoming cargo from the TGN and signaling pathways influence endosome maturation and how these different processes are coordinated. Recently, we demonstrated that the SM subunits of the HOPS and CORVET tethering complexes (Solinger and Spang, 2013) are important to control the flow through the endocytic pathway (Solinger and Spang, 2014). This project led us also to the discovery of a novel set of tethering complexes in the endocytic pathway.

The regulation of mRNA metabolism and transport

This research direction was inspired by our finding that the poly A binding protein, Pab1, associates with Arf1 and COPI vesicles in an mRNA-dependent manner and that Arf1 is required for ASH1 mRNA localization to the bud tip of yeast cells (Trautwein et al., 2004). The subsequent analysis allowed us to identify the first distal pole-localized mRNA in yeast (Kilchert and Spang, 2011). We performed screens to identify mRNAs that are restricted to certain sites in the cell, and we are currently investigating the mechanism of the localization of a subset of mRNAs. Moreover, we realized that arf1 mutant caused the formation of processing bodies (P-bodies), which are the main mRNA degradation platform in yeast (Kilchert et al., 2010). Interestingly, the P-bodies formed in arf-1 and other secretory pathway mutants were morphologically distinct from the ones formed under glucose starvation and required signaling through Ca²⁺/calmodulin. This led to the hypothesis that P-bodies may sequester a distinct set of mRNAs depending on the stressor. To test this hypothesis, we established a protocol that allowed us to purify P-bodies and to determine the RNA content through RNAseq. Likewise, we have established ribosome profiling to be able to get a systems view on how the cell regulated its proteome through mRNA degradation and translation under various conditions. This latter part was based on previous findings that polysome-associated proteins negatively control P-body formation under normal growth conditions (Weidner et al., 2014).
Publications 2017

Anton, Carlos; Zanolari, Bettina; Arcones, Irene; Wang, Congwei; Mulet, Jose Miguel; Spang, Anne; Roncero, Cesar (2017). Involvement of the exomer complex in the polarized transport of Ena1 required for Saccharomyces cerevisiae survival against toxic cations. Molecular biology of the cell, 28(25), 3672-3685.

Hoya, Marta; Yanguas, Francisco; Moro, Sandra; Prescianotto-Baschong, Cristina; Doncel, Cristina; de León, Nagore; Curto, M-Ángeles; Spang, Anne; Valdivieso, M-Henar (2017). Traffic through the trans-golgi network and the endosomal system requires collaboration between exomer and clathrin adaptors in fission yeast. Genetics, 205(2), 673-690.

Wang, Congwei; Schmich, Fabian; Weidner, Julie; Beerenwinkel, Niko; Spang, Anne: Context-dependent deposition and regulation of mRNAs in P-bodies. eLife, 07-142017.
Proteins synthesized on cytosolic ribosomes must be sorted to the specific compartment(s) in which they perform their function. Most secretory and membrane proteins are first targeted to the endoplasmic reticulum (ER) and then distributed via the secretory pathway. Our research focuses on (1) how membrane proteins are inserted into the ER membrane and acquire a defined topology, and (2) how transport vesicles are formed at the trans-Golgi or endosomes, or in vitro from purified components and liposomes. We furthermore study the mechanism by which trafficking mutants of pro-vasopressin cause dominant diabetes insipidus.

Post-Golgi protein sorting

Little is known about how proteins exit the trans-Golgi. Sulfation is a trans-Golgi-specific modification useful to study post-Golgi traffic. To introduce sulfation sites, we have tagged proteins with short sequences for the attachment of (heavily sulfated) glycosaminoglycans (GAG). Interestingly, GAG attachment was found to affect protein traffic by inhibiting endocytosis and by accelerating trans-Golgi-to-cell surface transport both for secretory and membrane proteins. Since GAG chains are long, helical, semi-rigid polymers, we are now testing the hypothesis that molecular size affects transport mechanism.

Endosome identity, morphology, and transport are regulated by rab GTPases and their effectors. We are studying the role of rabaptin5, an effector of rab4 and rab5, and found it to interact with an initiator of autophagy. Our experiments suggest a role for rabaptin5 in endosomal quality control and autophagy.

Amyloid-like aggregation in protein sorting and disease

Autosomal dominant neurohypophyseal diabetes insipidus is a trafficking disease in which the hormone precursor provasopressin is mutated, retained in the ER, and causes progressive degeneration of vasopressinergic neurons. We have discovered that mutant provasopressin forms fibrillar aggregates in cell culture and in vitro. It has recently been proposed that prohormones form functional amyloids at the trans-Golgi to generate secretory granules. In this light, ER aggregation of mutant provasopressin may reflect a mislocalized physiological process. We identified two sequences independently responsible for fibrillar ER aggregation of provasopressin mutants: the N-terminal hormone sequence and the C-terminal glycopeptide. The same two sequences also contribute to sorting into granules, providing the first experimental in vivo evidence in support of granule formation by functional amyloids.
Post-Golgi protein sorting

Endosome identity, morphology, and transport are regulated by Rab GTPases and their effectors. We are studying the role of Rabaptin-5, an effector of Rab4 and Rab5, that associates with Rabex5, the exchange factor of Rab5. Based on mutational analysis, Rabaptin-5 is found to control endosome morphology without affecting transferrin transport (determined by automated microscopy) in a manner that is incompatible with the prevailing model of Rab5 feed-forward loop.

Little is known about how proteins exit the trans-Golgi. We use sulfation, a trans-Golgi-specific modification, to characterize the exit pathway and kinetics to the cell surface. If necessary, proteins of interest are tagged to introduce tyrosine-sulfation sites or short sequences for the attachment of (heavily sulfated) glycosaminoglycans (GAG). In this manner, we found GAG-attachment to accelerate exit kinetics and to change the exit pathway of model proteins. Similarly, the proteoglycan form of the amyloid precursor protein exits in a manner distinct from that of GAG-free splice variants.

Sulfation is a trans-Golgi-specific modification useful to study post-Golgi traffic. To introduce sulfation sites, we have tagged proteins with short sequences for the attachment of (heavily sulfated) glycosaminoglycans (GAG). Interestingly, GAG attachment was found to affect protein traffic by inhibiting endocytosis and by accelerating trans-Golgi-to-cell surface transport both for secretory and membrane proteins. We are analyzing the mechanistic and physiological implications for proteoglycan sorting. In endocrine cells, prohormones and granins are sorted at the trans-Golgi network into dense-core secretory granules by an entirely different mechanism. We found expression of granule cargo to be sufficient to generate granule-like structures in nonendocrine cells. Deletion analysis of chromogranin A showed that the same segments that are required for granule sorting in endocrine cells produce granule-like structures in fibroblasts. The results support the notion that self-aggregation is at the core of granule formation and sorting into the regulated pathway.

Diabetes insipidus: A degenerative trafficking disease

Autosomal dominant neurohypophyseal diabetes insipidus results from mutations in the precursor protein of the hormone vasopressin. Mutant precursors are retained in the ER of vasopressinergic neurons and cause cell degeneration. We discovered that pro-vasopressin mutants form disulfide-linked oligomers and develop large, fibrillar aggregations in fibroblast and neuronal cell lines (see Fig. 2). Purified mutant pro-vasopressin spontaneously formed fibrils in vitro. Dominant diabetes insipidus thus belongs to the group of neurodegenerative diseases associated with fibrillar protein aggregates. We identified the vasopressin nonapeptide in the precursor sequence to be primarily responsible for aggregation in the ER, i.e. the same sequence that had been proposed to be responsible for amyloid aggregation into secretory granules at the trans-Golgi. The sequence physiologically important for cargo aggregation into the regulated secretory pathway thus is responsible for pathological aggregation of mutant precursors in the ER.

Fig. 2: Pro-vasopressin aggregates in COS-1 cells.
Publications 2017

Shi, Guojun; Somlo, Diane; Kim, Geun Hyang; Prescianotto-Baschong, Cristina; Sun, Shengyi; Beuret, Nicole; Long, Qiaoming; Rutishauser, Jonas; Arvan, Peter; Spiess, Martin; Qi, Ling (2017). ER-associated degradation is required for vasopressin prohormone processing and systemic water homeostasis. *Journal of Clinical Investigation*, 127(10), 3897-3912.

Estoppey, David; Lee, Chia Min; Janoschke, Marco; Lee, Boon Heng; Wan, Kah Fei; Dong, Hongping; Mathys, Philippe; Filipuzzi, Ireos; Schuhmann, Tim; Riedl, Ralph; Aust, Thomas; Galuba, Olaf; McAllister, Gregory; Russ, Carsten; Spiess, Martin; Bouwmeester, Tewis; Bonamy, Ghislain M. C.; Hoefpner, Dominic (2017). The natural product cavinafungin selectively interferes with zika and dengue virus replication by inhibition of the host signal peptidase. *Cell Reports*, 19(3), 451-460.

Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin (2017). Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting. *BMC Biology*, 15(1), 5.

Prof. Dr. Martin Spiess
» further information

Postdoctoral Fellows
Dr. Dominik Buser
Dr. Valentina Millarte
Dr. Daniela Stadel

PhD Students
Marco Janoschke
Mirjam Pennauer
Jennifer Reck

Master Student
Simon Schlienger

Administrative Assistants
Maja Güntensperger-Heckel
Brigitte Olufsen

Technical Associates
Cristina Baschong
Nicole Beuret
Tina Junne Bieri
The Center for Cellular Imaging and Nano Analytics (C-CINA) is studying membrane protein systems at different size and length scales with a combination of various light and electron microscopy methods. C-CINA is located in the D-BSSE building in the northern part of Basel, and is supported by the Swiss systems biology initiative SystemsX.ch.

The Stahlberg group studies biological membranes and the contained membrane proteins at several length scales and resolution levels. We use fluorescence light microscopy, and combine the obtained localization information about fluorescently labeled protein complexes or viruses with Serial Blockface Scanning Electron Microscopy (SBF-SEM), in collaboration with the Friedrich Miescher Institute. SBF-SEM can characterize the 3D structure at 20nm resolution of large specimen areas of thousands of human cells at a time, thereby extending light microscopy to higher resolution. We also employ electron tomography (ET) in a transmission electron microscope, to study small specimens like individual bacteria at even higher resolution.

To this end, C-CINA operates an FEI Titan Krios transmission electron microscope (TEM), which is one of the worlds most advanced high-resolution electron microscopes for the study of biological specimens. Further instruments in C-CINA include atomic force microscopes and a scanning transmission electron microscope (STEM). The latter is used to determine the mass-distributions of biological particles, which are adsorbed to ultra-thin carbon films and freeze-dried. We apply these different methods to the same specimens, enabling correlative light and electron microscopy (CLEM). The study of biological specimens at different levels of resolution and scale allows understanding the biological system at the cellular, molecular and submolecular level.
The visual proteomics imaging platform has as its central part an automated sample staining and desalting module for micro-patterning of electron microscopy grids. (a) Schematic representation of the main components and the meander-type writing pattern. (b) Nozzle positioned above an EM grid (enlarged inset, arrow indicates the nozzle tip) on the xyz-stage. (c) TEM image of a micro-patterned grid showing a section of the six 200-300-µm-wide lines of a stained sample (dark grey) diagonally to the EM grid (black) with empty carbon film in between (bright grey). Scale bar, 200 µm.

Membrane proteins
Membrane proteins are of central importance for health and disease. We study the high-resolution structure of membrane proteins by electron crystallography, and also characterize the arrangement of larger membrane protein complexes or the dynamic conformation of certain membrane protein systems in the biological membrane by multi-resolution microscopy, including electron tomography. In collaboration with Crina Nimigean, Cornell University, NY, USA, Joe Mindell, NIH Bethesda, USA, and Horst Vogel, EPFL, Lausanne, Switzerland, we study the structure and function of gated ion channels, transporters, and receptors by single particle EM and electron crystallography.

Software development
We are also developing software for the computer evaluation of the recorded data. We distribute a software package called 2dx for the computer image processing of 2D crystal images of membrane proteins (available at http://2dx.org). This MRC-based software is now used by over 400 external users, and features a user-friendly graphical user interface, and optionally fully automatic image processing, merging, and 3D structure reconstruction. In collaboration with Niko Grigorieff, Brandeis University, MA, we have developed a maximum-likelihood module, so that high-resolution structures of membrane proteins can also be determined in the absence of large well-ordered 2D crystals. We have developed a software algorithm for projective constraint optimization, to improve the resolution of the reconstruction, also in the direction perpendicular to the viewing direction of the microscope (effectively filling the so-called missing cone). We are also developing software solutions for the structure analysis of in-vivo membrane protein systems by electron tomography, by enabling user-friendly tomographic high-contrast reconstructions and tomographic molecular structure averaging.

Visual proteomics
As part of the SystemsX.ch funded project, we develop a visual proteomics platform to study the 3D structure, and size and mass distribution of the proteome of a biological cell. In collaboration with the Hierlemann group at the D-BSSE, we develop a microfluidics setup to pick individual cells, lyse and fractionate them, and cross-link the cytosolic content of a single cell, which is then stained and deposited on a TEM grid for automated 3D imaging to obtain structural information about the entirety of the proteome. Samples can also be freeze-dried and their mass analyzed by the scanning transmission electron microscope (STEM). This platform will also be combined with mass spectrometry in collaboration with the Zenobi laboratory at the ETHZ, and with the multiarray optical tweezers system developed in the Vogel laboratory at the EPFL.
Publications 2017

Nazarov, Sergey; Schneider, Johannes P; Brackmann, Maximilian; Goldie, Kenneth N; Stahlberg, Henning; Basler, Marek (2017). Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end. The EMBO journal, epub ahead of print.

Kowal, Julia; Biyani, Nikhil; Chami, Mohamed; Scherer, Sebastian; Rzepiela, Andrzej J; Baumgartner, Paul; Upadhyay, Vikrant; Nimigean, Crina M; Stahlberg, Henning (2017). High-resolution cryoelectron microscopy structure of the cyclic nucleotide-modulated potassium channel MloK1 in a lipid bilayer. Structure (London, England: 1993), in press.

Wang, Jing; Brackmann, Maximilian; Cañada-Díez, Daniel; Kudryashev, Mikhail; Goldie, Kenneth N; Maier, Timm; Stahlberg, Henning; Basler, Marek (2017). Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nature Microbiology, 2(11), 1507-1512.

Sejwai, Kushal; Chami, Mohamed; Rémygig, Hervé; Van Craenenbroeck, Renée; Sibran, William; Sütterlin, Rosmarine; Baumgartner, Paul; McLeod, Robert; Chartier-Harlin, Marie-Christine; Baekelandt, Veerle; Stahlberg, Henning; Taymans, Jean-Marc (2017). Cryo-EM analysis of homodimeric full-length LRRK2 and LRRK1 protein complexes. Scientific Reports, 7(1), 8667.

Hassaïne, Ghérici; Deluz, Cédric; Grasso, Luigi; Wyss, Romain; Hovius, Ruud; Stahlberg, Henning; Tomizaki, Takashi; Desmyter, Aline; Moreau, Christophe; Peclinovska, Lucie; Minniberger, Sonja; Mebariki, Lamia; Li, Xiao-Dan; Vogel, Horst; Nury, Hugues (2017). Expression, biochemistry, and stabilization with camel antibodies of membrane proteins: Case study of the mouse 5-HT3 receptor. Methods in Molecular Biology, 1635, 139-168.

Raasakka, Arne; Ruskamo, Salla; Kowal, Julia; Barker, Robert; Baumann, Anne; Martel, Anne; Tuusa, Jussi; Myllykoski, Matti; Bürck, Jochen; Ulrich, Anne S.; Stahlberg, Henning; Kursula, Petri (2017). Membrane association landscape of myelin basic protein portrays formation of the myelin major dense line. Scientific Reports, 7(1), 4974.
Martinez, Denis; Decossas, Marion; Kowal, Julia; Frey, Lukas; Stahlberg, Henning; Dufourc, Erick J.; Rick, Roland; Habenstein, Birgit; Bibow, Stefan; Loquet, Antoine (2017). Lipid internal dynamics probed in nanodiscs. ChemPhysChem, 18(19), 2651-2657.

Devos, Simon; Van Putte, Wouter; Vitse, Jolien; Van Driessche, Gonzalez; Stremersch, Stephan; Van Den Broek, Wim; Raemdonck, Koen; Braeckmans, Kevin; Stahlberg, Henning; Kudryashev, Misha; Savvides, Savvas N.; Devreese, Bart (2017). Membrane vesicle secretion and prophage induction in multidrug-resistant Stenotrophomonas malto-philia in response to ciprofloxacin stress. Environmental Microbiology, 19(10), 3930-3937.

Biyani, Nikhil; Righetto, Ricardo D.; McLeod, Robert; Caujolle-Bert, Daniel; Castano-Diez, Daniel; Goldie, Kenneth N.; Stahlberg, Henning (2017). Focus: The interface between data collection and data processing in cryo-EM. Journal of Structural Biology, 198(2), 124-133.

Seuring, Carolin; Verasdonck, Joeri; Ringler, Philippe; Cadalbert, Riccardo; Stahlberg, Henning; Böckmann, Anja; Meier, Beat H; Rick, Roland (2017). Amyloid fibril polymorphism: Almost identical on the atomic level, mesoscopically very different. The journal of physical chemistry. B, 121(8), 1783-1792.

Bibow, Stefan; Polybach, Yevhen; Eichmann, Cédric; Chi, Celestine N.; Kowal, Julia; Albiez, Stefan; McLeod, Robert A.; Stahlberg, Henning; Jeschke, Gunnar; Güntert, Peter; Rick, Roland (2017). Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I. Nature Structural and Molecular Biology, 24(2), 187-193.

Rheinberger, Jan; Hassaine, Ghérici; Chami, Mohamed; Stahlberg, Henning; Vogel, Horst; Li, Xiaodan (2017). Two-dimensional crystallization of the mouse serotonin 5-HT3A receptor. Micron, 92, 19-24.

Voluntary movements are orchestrated by a complex network of central nervous system nuclei, the basal ganglia. Among these nuclei, the substantia nigra pars reticulata (SNr) is the output nucleus; receiving, integrating and transferring information to diverse specific output regions. As such the SNr represents a crucial node in the processing of motor control. This ability depends on the SNr anatomical organization, its cellular, morphological, and functional connectivity with both the input basal ganglia nuclei and other diverse output targets, as well as its synaptic plasticity ability, which allows flexibility when integrating motor signals. This implies that such a complex circuit organization relies on specific subcircuits and each of them may be responsible for a precise aspect of motor tasks.

SNr circuitry
The heterogeneity of GABAergic neurons has been well described in the cortex or in the hippocampus. However the SNr has been neglected so far. Identifying and characterizing each cell population to understand its role in the dynamic of the overall basal ganglia is crucial to assess its impact at the level of motor behavior.

Our strategy relies on the use of cell type-specific transgenic mouse lines combined with viral-mediated gene delivery (optogenetic tools). This allows the identification and manipulation of one SNr neuron subtype at a time. *In vitro* and *in vivo* electrophysiology is performed to assess the local SNr functional connectivity as well as the input and output partners. Imaging techniques (confocal and electron microscopy) are valuable tools to further confirm neuronal identity and connectivity. We are developing motor-based behavioral tests that when combined with optogenetic stimulation of SNr neuronal subpopulations provide us with powerful means to assess their specific role in a precise motor task.

Dopamine neuromodulation
Dopamine is a key modulator of synaptic function in the basal ganglia. It is produced by dopamine neurons of the substantia nigra pars compacta and released in different nuclei of the basal ganglia, including the substantia nigra pars reticulata. Such neuromodulation plays a major role in amplifying or decreasing the activity of specific subcircuits with the famous direct and indirect pathways, leading to coordinated locomotion. Here we aim at refining our knowledge and understanding of these two pathways considering the heterogeneity of the SNr.

Remodelling of the SNr circuitry in pathological conditions
In Parkinson’s disease, the degeneration of dopamine cells leads to a loss of dopamine neuromodulation modifying neuronal morphology and their connectivity, which impacts synaptic transmission. Such reorganization drives the typical clinical motor symptoms of the disease, specifically a difficulty in initiating movements, resting tremor, stiffness, slowing of movement and postural instability. We are using a chemically induced mouse model of Parkinson’s disease. A complete investigation of the alterations induced after dopamine depletion will provide a ground to develop *in vivo* optogenetic manipulations in order to reverse or compensate the behavioral motor symptoms.
This study of the SNr circuitry will offer insights into the still poorly understood physiological mechanisms linking cell-type specificity and synaptic function to basal ganglia network activity and behavior. In addition, the study of alterations/remodeling within this system in a model of Parkinson’s disease will provide detailed knowledge of the cellular basis of motor disorders, which may lead to novel therapeutic strategies.

Fig. 2: Chemically-induced dopamine neurone degeneration.
Most projects that we pursue concern the functioning and evolution of genome-wide regulatory systems in organisms ranging from bacteria to humans. The type of large-scale questions that we aim to address include understanding how regulatory systems are integrated on a genome-wide scale, how regulatory networks are structured, how these systems control and potentially exploit the inherent noise in gene regulatory processes, how stable cell types are defined and maintained, how gene regulation evolves, and understanding under what conditions regulatory complexity can be expected to increase in evolution. Another major topic of interest in our group is the discovery and analysis of quantitative laws of genome evolution. We are particularly interested in using high-throughput genomic data to put theories of genome evolution on a strictly empirical footing. Our group pursues both theoretical/computational and experimental approaches and our projects can be roughly divided into “dry lab” projects in which we develop regulatory genomics tools for studying gene regulatory networks in higher eukaryotes, and “wet lab” projects in which we study gene regulation at the single-cell level in *E. coli*.

Regulatory genomics tools: From binding site constellations to genome-wide regulatory programs

In spite of the large volumes of data gathered by high-throughput measurements technologies in recent years, our knowledge and understanding of the genome-wide regulatory networks that control gene expression remains extremely fragmentary. We are still very far from being able to do meaningful quantitative modeling of these gene regulatory networks. Consequently, and understandably, the focus in most of the regulatory genomics community has remained firmly on data gathering efforts. In our opinion, this continuing primacy of experimental data gathering has led to a fairly careless attitude toward data analysis methods in many studies. We feel that the lack of rigorous and robust methodologies for interpreting high-throughput data is currently a major stumbling block in regulatory genomics research, and our group aims to help remedy this situation by developing analysis tools that use methods of the highest rigour, that can be automatically applied to raw data-sets, and that provide robust predictions with concrete biological interpretations. We typically strive to make our tools available through automated interactive web services, thereby empowering experimental researchers to perform cutting-edge analysis methods on their own data.

For over a decade we have been developing Bayesian probabilistic methods that combine information from high-throughput experiments (e.g. RNA-seq, ChIP-seq) with comparative genomic sequence analysis. Very roughly speaking, our projects concern identifying regulatory sites genome-wide in DNA and RNA, understanding how constellations of regulatory sites determine binding patterns of transcription factors and, ultimately, gene expression and chromatin state patterns. Finally, we aim to develop quantitative and predictive models that describe how dynamic interactions between transcriptional and post-transcriptional regulators implement gene regulatory programs that define cellular states and the transitions between them.

With regards to the predictions of regulatory sites in DNA and RNA, we have been working on extending the well-known position-specific weight matrix models of transcription factor (TF) binding specificity into dinucleotide weight tensor models that take arbitrary dependencies between pairs of positions into account. We have also been developing a completely automated procedure, called CRUNCH for analysis of ChIP-seq data, including comprehensive downstream motif analysis of binding regions. Using CRUNCH we have analyzed large-collections of ChIP-seq datasets in humans, mouse, and fly, and have been using these to curate comprehensive sets of regulatory motifs in these model organisms. All our genome-wide regulatory site predictions are available in various formats through our *SwissRegulon* database and genome browser.

To take a first step toward modeling how constellations of regulatory sites determine genome-wide expression patterns we developed an approach, called Motif Activity Response Analysis (MARA), that models the expression of each gene as a linear function of the binding sites that occur in its promoter, and unknown “motif activities” that represent the condition-dependent activities of the regulators binding to these sites.

Since the original presentation of this approach, in the FANTOM4 collaboration with the RIKEN Institute in Yokohama, Japan, we have been working both on completely automating the MARA approach and on extending it in a number of ways, including using MARA to model chromatin dynamics in terms of local constellations of regulatory sites. MARA is now available through a fully automated webserver, called ISMARA (integrated system for motif activity response analysis), available at ismara.unibas.ch, where users can perform automated motif activity analysis of their micro-array, RNA-seq, or ChIP-seq data, simply by uploading raw data ([Fig. 1](#)). The system has already been successfully used to predict key regulatory interactions in substantial number of studies, and we are working on various further improvements and exten-
sions of the system. This includes extension to additional model organisms such as Drosophila and E. coli, significantly extending the set of regulatory motifs that it uses, and incorporation of distal cis-regulatory modules. In addition, several of ISMARA’s recent applications involve systems that are highly medically relevant and we plan to adapt ISMARA in ways that aim to increase its medical relevance. In particular, we want to extend ISMARA to allow it to infer the effects of single nucleotide polymorphisms on gene expression and regulatory programs genome-wide. Finally, we are currently working to adapting ISMARA to be able to analyze data from single-cell RNA-seq experiments.

Gene regulatory dynamics at the single-cell level in bacteria

Since 2010 our group also includes a wet lab component where we study gene regulation at the single-cell level in E. coli. We are particularly interested in stochastic aspects of gene regulation at the single-cell level, how fluctuations in the physiological state of the cell couple to gene expression fluctuations, how stochastic fluctuations propagate through the regulatory network, and the role of stochasticity in the evolution of gene regulation.

In the first major wet lab project of our lab, we set out to study how natural selection has shaped the noise characteristics of E. coli promoters. In particular, using FACS selection in combination with error-prone PCR, and starting from a large collection of random sequences, we evolved a collection of synthetic promoter sequences in the lab. Surprisingly, we found that these synthetic promoters generally exhibit noise levels that are lower than those of most native E. coli promoters. In particular, native promoters that are known to be regulated by one or more TFs tend to exhibit elevated noise levels. Since our synthetic promoters were selected solely on their mean expression and not on their noise properties, this allowed us to conclude that native promoters of regulated genes must have experienced selection pressures that caused their noise levels to increase.
To explain these observations we developed a new theory for the evolution of gene regulation that calculates the “fitness” of a promoter as a function of its coupling to transcriptional regulators and the noise levels of these regulators (Fig. 2). This analysis shows that noise propagation from regulators to their target genes can often be functional, acting as a rudimentary form of regulation. In particular, whenever regulation has limited accuracy in implementing a promoter’s desired expression levels, selection favors noisy gene regulation. The theory provides a novel framework for understanding when and how gene regulation will evolve, and shows that expression noise generally facilitates the evolution of gene regulatory interactions.

The results of this project suggest that gene expression noise to a significant extent results from propagation of noise from regulators to their target genes. This in turn implies that noise levels should be condition-dependent and we are currently investigating how noise levels change as growth conditions change.

Fig. 2: A model of the evolution of gene expression regulation in a variable environment. (A) Expression distribution of an unregulated promoter (blue curve) and selected expression ranges in three different environments, that is, the red, gold, and green dashed curves show fitness as a function of expression level in these environments. The fitness of the promoter in the gold environment is proportional to the shaded area. (B) Contour plot of the log-fitness change resulting from optimally coupling the promoter to a transcription factor (TF) with signal-to-noise ratio S and correlation R. Contours run from 7.5 at the top right to 0.5 at the bottom right. The three colored dots correspond to the TFs illustrated in panels C–H. The red curve shows optimal S as a function of R. (C–E) Each panel shows the expression distributions of an example TF across the three environments (red, gold, and green curves). The corresponding values of correlation R and signal-to-noise S are indicated in each panel. (F–H) Each panel shows the expression distributions across the three environments for a promoter that is optimally coupled to the TF indicated in the inset. The shaded areas correspond to the fitness in each environment. The total noise levels of the regulated promoters are also indicated in each panel. The unregulated promoter has total noise $\sigma_{\text{tot}} = 0.1$.
A microfluidic framework for studying single-cell gene expression and growth dynamics

Beyond studying single-cell gene expression using flow cytometry, we aim to directly track both the growth and gene expression dynamics of single-cells as they are experiencing changing growth conditions. To this end we have worked on establishing a micro-fluidic setup in our lab that allows us to track growth of single cells and expression of fluorescent reporters in these cells using time-lapse microscopy. Our novel design is an extension of the so-called Mother Machine design (Fig. 3), which allows us to dynamically mix different growth media, thereby allowing us to arbitrarily vary the growth conditions that the cells experience. In addition, through a successful collaboration with the group of Gene Myers (MPI, Dresden), we have developed image analysis procedures that automatically segment and track the cells, allowing us to obtain accurate tracking of size and gene expression in a large number of single cell lineages. Using this microfluidic setup we are currently studying the stochastic response of single E. coli cells to switches in growth conditions.

Integrated genotype/phenotype evolution in E. coli

The availability of large numbers of complete genome sequences has led, over the last 15 years, to a revolution in our understanding of genome evolution and the identification of a number of surprising “quantitative laws” of genome evolution. However, whereas the insights gained from analysis of genomic data have been impressive, they have taught us surprisingly little about what selective pressures in the wild are driving genotype dynamics. In this project we aim to learn about selection pressures that are acting in the wild by combining information on genotype evolution in closely related bacterial strains with extensive quantitative characterization of their phenotypes. In particular, using next-generation sequencing we have determined complete genomes of 91 wild E. coli isolates that were all obtained from a common location at the shore of lake Superior (Minnesota, USA). In parallel we have been characterizing the phenotypes of these strains by assessing their growth in a wide variety of conditions using automated image-analysis of cultures on agar plates. We have

Fig. 3: A microfluidic setup for tracking growth and gene expression in lineages of single E. coli cells across dynamically changing growth conditions. A: The mother machine microfluidic device containing a main flow channel and dead-end growth channels in which E. coli cells grow. Our “dial-a-wave” modified design of this mother machine device, allows arbitrary switching between and mixing of two input media. B: Snap shot images of E. coli cells, carrying a GFP reporter construct reporting expression from the lac operon, in one growth channel of our microfluidic device. Snap shots are 30 minutes apart with time increasing from left to right, and the growth medium switching between glucose and lactose every 4 hours. C: Outline of the Mother Machine Analyzer software which segments the images and tracks the cells. D: Examples of the cell size (top, shown on a logarithmic scale) and gene expression (bottom) of a lineage of single cells across the time course. Note the temporary halt in growth after the first switch from glucose to lactose. Note also how, upon switching to lactose, lac operon expression is induced after an initial stochastic waiting period, and how protein production ceases during growth in glucose, with expression levels approximately halving at each cell division. E: Distribution of the lag times for lac induction for the first (red), second (blue), and third (green) change to lactose. The insets show the summary of lag times for lac operon induction (left) and for lac expression to cease upon switching to glucose (right).
started developing theoretical models to describe the joint evolution of genotypes and phenotypes of the strains. We are aiming in particular to develop rigorous quantitative measures of the extent to which different phenotypic traits have been under natural selection in the history of these strains, and to infer how this has impacted their genomes. As part of this project we have also recently developed a new method, called REALPHY, for automatically inferring phylogenies from raw next-generation sequencing data.

Publications 2017

Omidi, Saeed; Zavolan, Mihaela; Pachkov, Mikhail; Breda, Jeremie; Berger, Severin; van Nimwegen, Erik (2017). Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors. *PLoS Computational Biology, 13*(7), e1005176.
For many years transcription factors held the center stage in the regulation of gene expression. This paradigm has changed with the discovery of Piwi-protein-associated small RNAs that regulate gene expression at either transcriptional or post-transcriptional level. Among these, the microRNAs (miRNAs) have initially been discovered in the worm *Caenorhabditis elegans*, but in recent years they have been found in the genomes of organisms as varied as viruses, plants and humans. miRNAs play essential roles in development, metabolism, immune responses, and they can either suppress or enhance specific pathogenic processes such as infections and cancer. Although it is clear that binding of miRNA-containing RNA-induced silencing complexes to mRNAs increases the degradation rate of the mRNAs, the resulting macroscopic behaviors are still not understood. Many possibilities have been proposed, including repression of critical targets, decreasing protein noise and increasing the robustness of gene expression and providing a medium for cross-regulation between mRNAs.

Combining high-throughput experimental approaches with data analysis and computational modeling, the group of Mihaela Zavolan studies post-transcriptional regulatory circuits that control cellular differentiation. MiRNAs are an important component of these circuits, being predicted to target the majority of human genes. By modeling the combined effects of transcription factors and miRNAs on the transcriptome of various cells, the group is characterizing regulatory cascades that are triggered by miRNAs in the context of various differentiation processes. The group is especially interested to understand the dynamics of the regulatory process. A surprising finding of this work was that loading of miRNAs into the Argonaute proteins constitutes an important bottleneck that limits the speed of miRNA-dependent gene regulation. The important implication of this finding is that a rapid regulation of target expression requires active miRNA turnover in the Argonaute protein.

![Fig. 1](image1.png)

Fig. 1: A detailed model of miRNA-dependent regulation. It serves as a working model in our attempt to quantify the magnitude of the effects that miRNAs exert at different steps of mRNA processing and translation.

![Fig. 2](image2.png)

Fig. 2: MiRNA-dependent regulation of gene expression in single cells. HEK293 cells containing a vector encoding the green fluorescent protein and a miRNA precursor were induced with doxycycline to express these molecules. The mRNAs from individual cells are sequenced and the dependency of the miRNA target expression on GFP (and miRNA) expression was studied with computational models. The curves show that the total expression of predicted targets for two miRNAs is reduced, at the single cell level, in the presence of the miRNAs.

To further characterize the response of individual targets to miRNA expression, the group has established a cellular system in which the expression of miRNA can be progressively induced. The expression of each individual mRNA in each individual cell is measured with single cell sequencing, and mathematical models are employed to infer the parameters of interaction of each mRNA target with the miRNA.
Regulation of alternative polyadenylation

The maturation of eukaryotic mRNAs includes 5' capping, splicing and 3' end processing. The latter involves the endonucleolytic cleavage of the 3' untranslated region at specific sites followed by the addition of a poly(A) tail. Ample evidence has been provided that most mammalian genes possess multiple 3' end processing sites that can be used to generate multiple transcript isoforms through a mechanism called alternative polyadenylation (APA). Moreover, the aberrant use of poly(A) sites has been linked to proliferative states and cancer.

Pre-mRNA cleavage and polyadenylation is mediated by the 3' end processing complex, a large machinery that consists of four main subcomplexes, CF I_m, CF II_m, CPSF and CstF. The action of the complex is guided by cis-regulatory elements, the best conserved of which is the so-called “poly(A) signal”, AAUAAA. By analyzing a large catalog of experimentally determined 3' end processing sites, we recently identified variants of the canonical signal, whose position-dependent frequency profiles with respect to 3' end processing sites suggest a similar function in 3' end processing.

CF I_m is a subcomplex of the core 3' end processing complex that consists of two CF I_m25 and two molecules of CF I_m59 and/or CF I_m68 and specifically binds UGUA motifs. Previously, we have shown that knockdown of the CF I_m25 and CF I_m68 subunits causes a shift in polyadenylation site usage from distal to proximal sites, leading to overall shortening of 3' untranslated regions (UTRs). The physiological relevance of this mode of regulation is underscored by the recent finding that limiting CF I_m25 abundance is associated with tumorigenesis (Masamha et al., Nature 2014). APA can affect not only 3' UTR lengths, but can also occur at intronic sites as well as in exons that are close to transcription start sites (see Figure). It is critical for mRNA stability and translation and can even influence protein localization (Berkovits & Mayr Nature 2015).

Work in our group aims to characterize the regulation of alternative poly(A) site usage and its impact for cellular behaviors.

Much of the work in the Zavolan group is collaborative. Examples of our current collaborative projects are the Sinergia project entitled “Molecular underpinnings of age-related muscle loss”, and the SystemsX.ch grants entitled “Controlling and exploiting stochasticity in gene regulatory networks” and “TargetInfectX: multi-pronged approach to pathogen infection in human cells”.

Important partners
Witek Filipowicz (Friedrich Miescher Institut, Basel, CH); Helge Grosshans (Friedrich Miescher Institut, Basel, CH); Markus Stoffel (Eidgenössische Technische Hochschule Zurich, CH); Petr Svoboda (Institute of Molecular Genetics, CZ); Thomas Tuschl (The Rockefeller University, New York, US); Gunter Meister (University of Regensburg, D).
Publications 2017

Omidi, Saeed; Zavolan, Mihaela; Pachkov, Mikhail; Breda, Jeremie; Berger, Severin; van Nimwegen, Erik (2017). Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors. *PLoS Computational Biology*, 13(7), e1005176.

Dimitrova, Yoana; Gruber, Andreas J.; Mittal, Nitish; Ghosh, Souvik; Dimitriades, Beatrice; Mathow, Daniel; Grandy, William Aaron; Christofori, Gerhard; Zavolan, Mihaela (2017). TFAP2A is a component of the ZEB1/2 network that regulates TGFβ1-induced epithelial to mesenchymal transition. *Biology Direct*, 12(1), 8.

Riba, Andrea; Emmenlauer, Mario; Chen, Amy; Sigoillot, Frederic; Cong, Feng; Dehio, Christoph; Jenkins, Jeremy; Zavolan, Mihaela (2017). Explicit Modeling of siRNA-Dependent On- and Off-Target Repression Improves the Interpretation of Screening Results. *Cell Systems*, 4(2), 182-193.
The Biophysics Facility supports researchers in the use of sophisticated instrumentation to measure the interactions, reactions, stability and size of biological molecules with accuracy and precision.

A growing range of techniques has been developed to characterise the physical properties of biological macromolecules such as proteins and nucleic acids. These biophysical techniques enable us to investigate how those molecules gain and retain structure, perform reactions, and interact when they assemble into larger structures, in order to play their essential roles in living cells.

Choosing the best methods to answer your question

We identify the best combination of methods to answer each question. The facility has instruments for micro-calorimetry, circular-dichroism and fluorescence spectroscopy, surface plasmon resonance, analytical ultracentrifugation and light-scattering measurements. A few examples of typical applications are:

- Measuring the energies of macromolecular interactions
- Determining the size and shape of complexes
- Assessing the impact of mutations on protein structure and stability
- Screening small molecules libraries to identify chemical probes that bind to a specific macromolecular target

We support researchers who wish to use these techniques, from the first stages of experimental design to the final stages of data interpretation and presentation. Depending on individual requirements, we can perform experiments for users or train them to operate instruments and to collect high-quality data. We are also responsible for maintaining and improving the instruments to meet the future needs of the Biozentrum.

Publications 2017

FACS Core Facility (FCF)

Staining, analysis and sorting of cells

Fluorescence Activated Cell Sorting (FACS) is a technology with which mixtures of cells can be analyzed, counted and separated with a special instrument, the flow cytometer. This procedure is already being routinely applied in medical diagnostics in hematology and immunology, in order to identify specific cell types in samples. Furthermore, in various research fields such as cell biology, neurobiology and infection biology FACS is being used more and more frequently and offers completely new possibilities for the analysis and purification of cells and cell organelles.

The procedure

The analysis can be carried out on suspended cells with a size range between 0.2 and 100 micrometers, which are first stained with different fluorescent markers such as fluorescent proteins like GFP and RFP, fluorescently labeled antibodies and/or many other stains. In the flow cytometer, these particles/cells pass a laser at up to 130 km/h. The scattered light reveals the size and internal structure of the cell, while the fluorescence indicates which stain the cell contains. Cells displaying the desired characteristics are identified and counted. Finally, the fluid stream is divided into many miniscule droplets. Droplets which contain a desired cell are electrically charged and diverted by an electric field into different collecting tubes. The various separated cells can subsequently be investigated using microscopy, biochemistry and functional experiments.

The service

All research groups at the Biozentrum are invited to use the services of the facility and receive advice for upcoming experiments. They will be supported and guided in the planning and carrying out of experiments as well as the subsequent analysis. Besides support and teaching, the service facility FACS is concerned with further development and optimization of various aspects of the FACS methodology.

Detection of 6 subpopulations in a mixture of various Salmonella strains.

Janine Zankl

Technical Associate

Stella Stefanova
During the past decade the importance of light microscopy increased tremendously in all types of biological research. In addition to the image acquisition at various types of microscopes, data handling and image analysis is becoming more and more important.

Microscopes and support for image analysis is available for all research groups of the Biozentrum

The Imaging Core Facility (IMCF) provides infrastructure for all microscopy techniques currently used in life sciences. The microscopes in the facility span the entire range from standard wide-field microscopy to confocal microscopy and super-resolution microscopy. The newly established facility started to operate in autumn 2011. There are 6 point scanning confocal microscopes, 2 spinning disk confocal microscopes, 3 wide-field microscopes, a serial 2-Photon tomography microscope, a lightsheet microscope, a slide scanner and a 3D-SIM super-resolution microscope available. The aim of the IMCF is not only to provide the facility users with well-maintained modern microscopy systems as well as with theoretical and technical support but also to develop and adapt new microscopy techniques and image analysis routines.

Areas of interest

Besides the microscopy service for the Biozentrum, research at the IMCF focuses on the development of (i) optimal system performance in terms of image acquisition speed and experimental flexibility thereby enabling users to do all types of experiments under optimal conditions, (ii) image analysis and automation solutions, and (iii) a data storage and database solution (in collaboration with Research IT).

Areas of activity

The IMCF supports projects requiring specific light and fluorescence microscopy setups. Preferably, the IMCF should be involved at every stage: in the planning of a new imaging/microscopy project (selection of fluorescent dyes, choice of microscopy system), during the initial phase (helping with the actual experimental setup including the soft- and hardware settings), and in image analysis and quantification (advice on usage of image analysis software such as Icy, Arivis, Imaris and Fiji/ImageJ). Only this allows the IMCF to provide the best support at all stages of the project and to adapt the experimental settings to the specific needs.

We also provide a weekly open support (every Wednesday morning), where users can come and discuss their issues with members of the IMCF, without having to take an appointment.

Specific services and resources

In detail, we will provide the following state of the art microscopy systems for research groups:

Point scanning confocal microscopes

- Inverted Leica SP5 I system with resonance scanner for fast scanning (live cell imaging), multiphoton laser, and incubation chamber
- Inverted Leica SP5 II system with resonance scanner for fast scanning (live cell imaging), high sensitivity HyD-detectors, Matrix screening software, and incubation chamber
- Inverted Leica SP8 system with resonance scanner for fast scanning (live cell imaging), and incubation chamber. !BSL2 system!
Zeiss LSM 700 upright
Zeiss LSM 700 inverted
Zeiss LSM 800 inverted with incubation chamber for live cell imaging and Airyscan

Spinning disk confocal microscopes
- PerkinElmer Ultraview with dual camera setup for high speed imaging
- 3i Spinning Disk with highly sensitive Photometrics Evolve EM-CCD camera

Wide-field live cell imaging systems
- Applied Precision DeltaVision system
- FEI MORE system with TIRF

Standard wide-field system
- Leica DM 6000, upright microscope with color camera for histology images

Serial 2-photon tomography system
- TissueVision TissueCyte, to image whole organ imaging at high resolution without clearing procedures

Lightsheet system
- Zeiss Z1 lightsheet, for live & fixed large samples

Slide scanner system
- Zeiss Axio Scan.Z1, fully automated for high throughput

Super-resolution 3D-SIM system
- GE Heathcare OMX v4 Blaze, for fixed and live samples, with structured illumination (3D-SIM), Ring TIRF (works with PALM or TIRF techniques)

Data visualization and image analysis software
- For 3D-rendering, tracking, and animations of microscopy data: Arivis, Icy, Imaris, Volocity, Fiji/ImageJ
- For reconstruction of 3D multi-position stacks (registration, stitching): XuVTools
- For image analysis: Python/SciPy/NumPy, Matlab, CellProfiler, In-house plugin or macro development for specific image, analysis solutions

Steering committee
To coordinate the Imaging Core Facility activities at the Biozentrum a steering committee has been established in 2011. The steering committee is composed of five group leaders from different focal areas of the Biozentrum that are heavily involved in microscopy, and representatives from Research IT and from the Biozentrum coordination office.

Outlook
Light microscopy is developing at a tremendous pace and several new microscopy techniques have been developed to bypass Abbé’s diffraction limit of light. These new super-resolution technologies are either based on structured illumination, nonlinear fluorophore responses, or on the precise localization of single molecules. Depending on the type of method used, it is now possible to improve the maximal resolution from 200 nm to values of 50 to 100 nm.

After careful evaluation of the different techniques, the IMCF of the Biozentrum is planning to provide super-resolution techniques at the facility. Super-resolution microscopy will open up a new dimension for research at the cellular and subcellular level. Hitherto non-resolvable small subcellular structures such as centrioles, lipid rafts, neuronal dendrite spines, nuclear pore complexes, bacterial polar complexes, and many other macromolecular structures with less than 200 nm in diameter – so far exclusively accessible by electron microscopy – will be visualized by light microscopy, and eventually live cell imaging.

Publications 2017
Schürmann, Nura; Forrer, Pascal; Casse, Olivier; Li, Jiagui; Felmy, Boas; Burgener, Anne-Valérie; Ehrenfeuchter, Nikolaus; Hardt, Wolf-Dietrich; Recher, Mike; Hess, Christoph; Tschann-Plessl, Astrid; Khanna, Nina; Bumann, Dirk (2017). Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nature Microbiology, 2(4), 16268.
Proteomics is a rapidly evolving field that started as a discovery-oriented technique and has now become a robust and sensitive quantitative tool in biological research. It is used to study changes in protein expression and protein modifications in a high-throughput manner.

Proteomics service is available for all research groups of the Biozentrum

The Proteomics Core Facility (PCF) provides infrastructure for the identification and quantification of proteins and their modifications. This includes profound expertise in phosphopeptide enrichment strategies, various platforms for protein and peptide separations, state-of-the-art mass spectrometry (MS) for discovery based MS and LC-MS/MS experiments as well as directed and targeted MS workflows for sensitive and consistent quantitative monitoring of pre-selected sets of proteins. The PCF continuously develops and adapts new sample preparation techniques, MS approaches and software tools to provide optimal analytical services for the individual research groups and their projects.

Areas of interest

Besides the analytical service for the Biozentrum, research at the PCF focuses on the development and application of (i) quantitative phosphoproteomics for tracking complex cellular phosphorylation events (Jenoe lab) and (ii) data-independent MS workflows for proteome-wide quantitative studies of microbes and the specific monitoring of proteins and their modifications in complex systems such as human cell lines (Schmidt lab).

Specifically, snapshots of signaling pathways in hepatocellular carcinomas (HCC) are acquired by quantitatively comparing proteomes and phosphoproteomes of biopsies taken from HCC patients. The aim is to capture the proteome and the phosphorylation status of signaling pathways by analyzing serial biopsies of patients before and during treatment with the protein kinase inhibitor Sorafenib. Other projects focus on proteome-wide studies of various human pathogens, identification of protein-protein interactions and determining precise concentrations of outer membrane proteins using targeted proteomics assays. Furthermore, extensive quantitative datasets of human cancer cells showing chromosome instability (CIN) were acquired to identify key factors and cellular processes involved in the formation and tolerance of CIN.

Areas of activity

The PCF supports projects requiring the identification and quantification of proteins and protein modifications. Preferably, the PCF should be involved at every stage: in the planning of new research projects, during the initial phase and while the project progresses. Only this allows the PCF to provide the best analytical tools at all stages of the project and to adapt the analytical strategies to the specific needs. Furthermore, this facilitates the interpretation of the data and its communication in a user-friendly and plain manner.
Fig. 2: Workflow of system-wide protein abundance determination.
The workflow comprised three steps. First, cells of the various samples were lysed, proteins extracted and proteolyzed using trypsin. The peptide mixtures were either further fractionated using OFFGEL electrophoresis (OGE) or directly analyzed in biological triplicates by shotgun LC-MS/MS and quantified by label-free quantification. Second, the cellular concentrations of 41 proteins covering all components of the glycolysis pathway were determined across all samples by selected-reaction monitoring (SRM) and stable isotope dilution (SID). Therefore, for each protein, heavy labeled reference peptides (selected from the shotgun LC-MS/MS experiment) were synthesized. After spiking known amounts of these references into each sample, absolute quantities were determined for the corresponding proteins by SRM. Third, the numbers of cells taken for LC-MS/MS analyses were determined for each sample by flow cytometry. With this information, the protein concentrations determined by SRM/SID could be transformed to protein copies/cell and a quantitative model was built to translate MS-intensities of all quantified proteins to cellular abundance estimates using the Intensity Based Absolute Quantification (iBAQ) approach.

Specific services and resources
In detail, we provide the following state of the art MS instrumentation and methods for the research groups:

LC-MS/MS platforms
- Two High-resolution hybrid LTQ Orbitrap-Elite coupled online to an Easy-nLC-system (both from Thermo-Fisher Scientific) for discovery-driven workflows
- TSQ Vantage Triple Stage Quadrupole Mass Spectrometer coupled online to an Easy-nLC-system (both from Thermo-Fisher Scientific) for hypothesis-driven workflows using selected-reaction monitoring for protein quantification
- Q-Exactive HF coupled online to an Easy-nLC-system (both from Thermo- Fisher Scientific) for discovery-driven and data-independent MS workflows

Sample preparation and fractionation instruments
- 3100 OFFGEL Fractionator for peptide separation using isoelectric focusing (Agilent)
- Capillary liquid chromatograph for peptide separation and fractionation (Agilent)
- Database search tools: Mascot, Sequest and XTandem for tandem mass spectra interpretation, also in combination with the trans proteomic pipeline
- Scaffold (Proteome software) for communicating proteomics results in a user-friendly format
- Progenesis Ql label-free quantification software (Nonlinear Dynamics)
- MaxQuant for quantification of isotopically labeled samples
- SpectroDive/spectronaut/Skyline for analysis of data-independent protein quantification experiments
- In-house software tool SafeQuant for absolute protein quantification and statistical analysis of large quantitative datasets

Methods
- Protein identification, including posttranslational modifications
- Absolute and differential protein quantification (label-free, isobaric isotope labeling-based)
- Enrichment and quantification of phosphopeptides
- Data-independent MS for consistent and accurate protein quantification in large-scale proteomics projects

Steering board
To coordinate Proteomics activities at the Biozentrum a PCF steering board was established in 2010. The steering board committee is composed of four group leaders who are strongly committed to proteomics, the Head of Administration of the Biozentrum and the two co-directors of the PCF.

Outlook
With the continuing advances in MS instrumentation (and the purchase of the new QE-HF), analytical methodology and software tools, proteomics is well suited to meet the requirements for modern biological projects on a system-wide level. In particular, data independent (DIA) proteomics workflows have great potential in reproducing and extensively quantifying entire proteomes over large sample numbers. The new LC-MS platform is ideally suited for this type of analysis, which is currently integrated and tested for several in-house projects. We will go one step further and develop optimized protocols for targeted quantification of post-translational modifications (PTMs), like phosphorylation and acetylation, as well as protein isoforms directly from cell lysates without the need for enrichment steps and considerably reducing required sample amounts. Besides, we are currently establishing a new solid phase extraction protocol that only requires minimal sample load and is particularly useful for precious samples that are in short supply.
Publications 2017

Mittal, Nitish; Guimaraes, Joao C; Gross, Thomas; Schmidt, Alexander; Vina-Vilaseca, Arnau; Nedialkova, Danny D; Aeschimann, Florian; Leidel, Sebastian A; Spang, Anne; Zavolan, Mihaela (2017). The Gcn4 transcription factor reduces protein synthesis capacity and extends yeast lifespan. *Nature communications*, 8(1), 457.

Furrer, Regula; Eisele, Petra S.; Schmidt, Alexander; Beer, Markus; Handschin, Christoph (2017). Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. *Scientific Reports*, 7, 40789.

The Research IT technology platform supports research and administration projects with increased information technology demands. We accompany projects from their inception to a stable productive solution.

We provide and integrate information technology (IT) solutions that help our institute’s members to organize and execute their work easily and efficiently. We support the Biozentrum’s groups and platforms in complex IT questions, for instance when dealing with large data sets.

Three aspects are relevant to our service

- Planning, coordination and execution of strategic or mandated IT projects arising from scientific and business needs, in collaboration with internal/external partners
- Support of the Biozentrum’s research groups, technology platforms and administrative units (“open-door-consulting”)
- Operation of a selected set of production systems and services that are specific and relevant to our institute

Areas of interest

We participate in projects that cover the whole spectrum from scientific research projects (with direct involvement in the science and the analysis of data) to core infrastructure projects (where we develop a tool or technology for widespread use in the institute). Moreover, we closely collaborate with the Biozentrum’s research groups, technology platforms and administration units, as well as with our infrastructure partners to address these challenges. A common aspect of our projects is the focus on the management of information.

Research IT support for structural biology

We provide computational support for the structural biology and biophysics research at the Biozentrum. Dr. Adam Mazur is contributing to a number of research projects by developing scientific software and providing analytical expertise in a broad variety of applications, such as:

- Modeling of coupled thermodynamic equilibria in multimeric protein complex assembly
- Structure calculations using paramagnetic NMR data
- Integrative structure determination based on Cryo-EM and NMR data
- Analysis of bacterial mutant motility using cell tracking in microscopy time-series data
- Development of custom tools for the processing and analysis of high-speed AFM data and calculation of AFM topographs from molecular structure and tip geometry

Scientific data management and analysis

Biological data sets are growing exponentially. These data need to be efficiently stored, annotated and retrieved. We are aligning scientists’ needs and technical implementation of storage systems in partnership with central IT services provided by the University. In this way, we can provide for the storage of large scientific datasets with appropriate disaster recovery strategies, as well as develop processes for archiving to slower, cheaper storage media. Moreover, we collaborate with computational experts embedded in other Biozentrum technology platforms, as a large part of the research data to be managed and analyzed is generated here.
Annotation and scientific data management systems

Experimental data must be annotated with meta-information necessary to preserve the context in which it was generated. For specific experimental approaches, we use tools like OpenBIS and Omero as scientific data management systems to capture and organize annotated data. Our own SampleQueue application is used to manage mass spectrometry samples and derived data in our Proteomics Core Facility.

Interactive analysis of imaging datasets using the VAMP platform

Microscopy data is a major driver of data growth at our institute, due to the simultaneous advent of new imaging techniques and improvement in the automation of image acquisition. These very exciting developments allow the detailed analysis of phenomena on the nanometer scale, as well as the study of biological processes in whole organs or individuals over time. However, such studies generate large data amounts which typically are inspected and analyzed in an interactive fashion. This analysis is hampered by a number of issues:

- Data sets are large, analysis is CPU and I/O intensive. Staging data sets to/from local storage can take as long as the analysis itself.
- Analysis workflows are variable and often depend on graphical interaction with the user. Software commonly used is written with this interaction pattern in mind. Therefore, parallelization on a Linux HPC cluster is rarely a realistic option.
- Finally, data workflows are depending on manual intervention, including tedious copy steps. This is prone to lead to errors and to data duplication.

In an ongoing project, we are collaborating with the Imaging Core Facility to provide virtualized analysis workstations (VAMP: Virtual Analysis and Data Management Platform) that provide the required storage and computing capabilities to the scientists on-demand. This system has a number of advantages over the use of powerful stand-alone workstations:

- Flexibility: Provide a number of different virtual workstation types (hardware, provided software).
- Accessibility: Available from everywhere within Uni Basel VPN. Disconnecting/Reconnecting a session is possible.
- Processing power (CPU+GPU) resides on powerful server, client only displays view on data. This central resource is shared, leading to better utilization.
- Routine data workflows can be automated to simplify use and prevent errors.
- Resource management automation through reporting and management scripts.

Management of data throughout its life cycle

With increasing data volumes and increasing complexity and interconnectedness of data, the management of these data sets throughout their life cycle and the life cycle of the underlying systems becomes highly relevant. We are developing strategies and tools to help our users select data for archiving, trigger automated compression and help with the annotation of diverse data sets. In addition, we work closely with the university’s storage infrastructure providers to coordinate efficient data migration when storage systems are being replaced or upgraded.

For the capture of general laboratory data, we have introduced the use of wiki-based electronic lab notebooks (“paper-on-glass”) to a large and growing number of the Biozentrum’s research groups. This use case logically extends the usage of Wiki systems, which were already well established at the Biozentrum for project-specific documentation. Additionally, the Biozentrum Intranet, which we introduced in 2012, is based on a customized version of the same enterprise-level wiki platform and provides the central place for the over 500 members of the Biozentrum to efficiently exchange organizational and administrative information.
Oversight
A steering board oversees the activities and strategic orientation of Research IT. It is currently composed as follows: Dr. O. Biehlmaier (Head, IMCF), T. Jelk (Head, BioPhIT), Prof. Dr. Ch. Dehio, Prof. Dr. Ch. Handschin, Prof. Dr. E. Nigg (ex officio), Dr. M. Podvinec (Head, Research IT), Marcel Scheiwiller (Head of Administration), Prof. Dr. T. Schwede (Chair), Dr. A. Schmidt (Co-director PCF)

Project support and collaborations
Research IT supports in-house projects with activities related to the above three areas, ranging from infrastructure coordination to software evaluation and development. At best, our involvement begins in the planning phase of new research projects and continues along the project’s progress. The goal is to align tools and infrastructure to the specific project requirements.

In particular, we collaborate with the other Technology Platforms (e.g. Proteomics Core Facility, Imaging Core Facility) to capture requirements for data storage, annotation and processing at the point where data sets are generated.

As the complexity of projects rapidly exceeds the scope of what can be achieved on a user’s workstation in terms of data storage and processing, Research IT also draws upon the resources and expertise of partners in-house: IT Support and bioinformatics system administration, of local partners within the university (URZ) and outside. Services and resources Beyond project-based work, Research IT also develops and maintains a portfolio of services that are provided as common infrastructure to all members of the institute.

Services and resources
Beyond project-based work, Research IT also develops and maintains a portfolio of services that are provided as common infrastructure to all members of the institute.

Publications 2017
We offer electron microscopy (EM) structural investigations in the field of Biology. Our methods include cellular and molecular EM as well as reconstructions of cells, tissue sections and proteins.

The last few years have seen substantial advances in the use of EM techniques in the field of life sciences, through the introduction of a more accurate imaging system, microscopes equipped for high resolution and reliable data analysis procedures. This combination has allowed structural elements of biological samples to be determined in unprecedented detail. We apply various technical approaches to visualize the ultrastructural details of cells and determine the 3D structure of bio-macromolecules.

Single particle analysis
Used to determine the high-resolution three-dimensional (3D) structure of isolated frozen protein complexes using state of art of electron microscopes and electron detectors.

Thin sectioning
Allows the visualization of the ultrastructure of tissues and cells. Thin sections of samples are made at room temperature (classical method) or at low temperature (CEMOVIS) and are imaged in two dimensions (2D: projections) or 3D (tomography) by TEM.

Tomography and sub-volume averaging
Used to visualize cellular samples in 3D. Images are recorded with the sample in different orientations and computationally integrated to give a 3D model of the imaged cell. Cryo conditions keep the sample in a close-to-native state, so that high-resolution structural information of the sample is preserved. Sub-tomogram averaging can be used to determine the 3D structure of proteins in their cellular environment.

Our services
EM projects require the successful completion of three interlaced tasks: sample preparation, data acquisition, and image processing. The nature of the sample, the targeted resolution and the scope of the biological question determine the specific requirements in each of these areas. Our goal is to define the best-suited workflow for each project, providing training, technical support and access to our infrastructure. We also provide consulting services to help our users setup and operate the required data analysis programs on the computing resources.

For further details please visit our website hosted by C-CINA: https://c-cina.unibas.ch/bioem/.

Cryo-electron micrograph of membrane proteins reconstituted into liposomes.
The C-CINA technology platform combines a wide range of microscopy equipment, methods and software tools applicable to investigate biological specimens in three dimensions.

C-CINA is equipped with state-of-the-art light and electron microscopes, and is geared to the study of biological samples “across the dimensions”. It houses the Stahlberg group, the Biozentrum branch of the Abrahams group, and the BioEM Lab service facility. Details of the equipment available and the research ongoing at C-CINA can be found at: https://ccina.unibas.ch/.

Combined use of different microscopes
The microscopes available function at different magnifications, ranging from hundreds of micrometers to less than a fraction of a nanometer. The key element of C-CINA’s equipment is the high-resolution electron microscope called “Titan”. This machine is 4.5 meters high and is designed for computerized remote control. The wide range of additional equipment means that many different methods can be combined to prepare and to examine biological specimens.

“Across the dimensions”
The different types of light and electron microscopy can be used to produce three-dimensional images of proteins at various magnifications and from various aspects. For example, tissue regions can be selected by light microscopy, the rough three-dimensional structure of the excised regions determined by serial block-face scanning electron microscopy, and the structure of individual cells from interesting areas studied by high-resolution electron tomography using a transmission electron microscope. Finally, the structure of individual proteins in the cells can be reconstructed by sub-volume averaging. In addition, high-resolution cryo electron microscopy can be used to obtain the three-dimensional structure of purified protein complexes at atomic resolution.

Computer image processing provides insight into 3D
Two-dimensional images from the various microscopes are collated into three-dimensional data by computer image processing. Just like Google Maps, the computer allows the combination of different magnifications.

Software and methods
Software and methods developed by the groups housed at C-CINA are implemented in the technology, ensuring that this remains state-of-the-art.
Ranging from storage and organization of large data volumes, to statistical data analysis and the simulation of complex systems, computer supported methods play a central role in today’s research. sciCORE provides the central infrastructure and services in the field of scientific computing for researchers at the University of Basel.

The application of modern research technologies generates increasing volumes of data that not only requires efficient storage but also meaningful analysis and interpretation. In addition to the traditional pillars of science, theory and experimentation, computer supported simulation has established itself as a third pillar. Computer simulations assist researchers in modeling complex systems to better understand their behavior. In order to successfully master these tasks, alongside an efficient and powerful IT infrastructure (high-performance computing, HPC), highly sophisticated software tools and expertise in computational sciences are required.

Scientific high-performance computing, data management, training and support

The services provided by the sciCORE Facility are available to all researchers at the University of Basel. sciCORE offers efficient technical solutions in high-performance computing and advises scientists on matters of data management and storage as well as the use of high-performance computing. More specifically, the tasks of sciCORE are:

» Provide and maintain state-of-the-art infrastructure for high-performance computing (HPC) and large-scale storage systems for big data volumes
» Provide advice to scientists on most efficient usage of HPC resources (consulting)
» Maintain an up-to-date software stack
» Host and operate HPC equipment on behalf of university departments
» Provide courses and training in the use of HPC resources
» Participate in computational projects of national scope (e.g. SystemsX.ch; PASC, CRUS P2)
» Support users in computational aspects of grant applications
» In collaboration with the SIB Swiss Institute of Bioinformatics, host and maintain several worldwide utilized bioinformatics resources and provide active scientific support for research projects in the field of life sciences

In addition, sciCORE organizes monthly informal user meetings to inform about latest developments, updates on ongoing projects and plans for the future. sciCORE currently supports a broad spectrum of scientific projects in the fields of physics, computational chemistry, life sciences, medicine and economics.

Prof. Dr. Torsten Schwede
» further informations

Research Associates
Dr. Leila Tamara Alexander
Dr. Lorenza Bordoli
Dr. Ruben Martin Cabezon Gomez
Dr. Anja Matthiä
Dr. Thierry Sengstag
Dr. Jaroslaw Witold Surkont

Administrative Assistant
Yvonne Steger

Technical Staff
Pablo Escobar López
Jani Heikkinen
Martin Jacquot
Guillermo Losilla Anadon
Eva Pujadas
Kevin Thomas Sayers
The Life Sciences Training Facility (LSTF) is an academic facility that provides access to deep-sequencing and microarray technologies and contributes to the identification of novel molecular pathways.

Until recently, researchers were able to study only single or just few genes related to a particular biological question. Novel genome-wide methods now allow for studying all genes of an organism. These technologies pave the way towards new discoveries related to the regulation and function of genes. The LSTF provides researchers a fully functional platform to use such technologies for their projects.

RNA: a key molecule mirroring gene function
The LSTF provides guidance to the research community for various projects related to DNA and RNA applications. Specifically, the study of RNA, a key molecule mirroring gene function, represents one of the current research foci within the LSTF. Indeed, the regulation of RNA molecules is key to understand the way cells function or dysfunction. The strength of recent technologies is to provide a simultaneous assessment for all genes: the entire populations of mRNA, non-coding RNA or microRNA are quantified. Thus, we cover all aspects of gene expression profiling from the experimental design to basic data analysis.

More than a classical Core Facility
For close to 15 years, the LSTF has been helping researchers to perform genome-wide studies. We serve the University of Basel, in particular the Department of Biomedicine and the Biozentrum. Experiments are designed and executed in an interactive way, i.e. both the specific research team and the LSTF staff are involved. We work in close collaboration with the D-BSSE in Basel, which has ample expertise related to deep sequencing.
The Quantitative Genomics Facility (QGF) is a central research and service facility located in the Department of Biosystems Science and Engineering (D-BSSE) of the ETH Zurich in Basel, supported and run jointly with the University of Basel and the Friedrich Miescher Institute (FMI) for Biomedical Research. The QGF team provides technical support for next generation sequencing applications in genomics and epigenomics, including high-throughput data management and analysis.

In parallel with the human genome sequencing effort, several new technologies have emerged that allow sequencing at unprecedented throughput and low cost. These technologies are generally referred to as “Next Generation Sequencing (NGS)”. They have enabled a large diversity of applications from genome resequencing to identify variations within populations to quantification of mRNA and small RNA expression and the abundance of various epigenetic marks.

In order to take advantage of these powerful technologies, scientists from the Department of Biosystems Science and Engineering (D-BSSE), University of Basel (DBM, Biozentrum) and FMI established a NGS unit, which is housed by the D-BSSE. It currently comprises an Illumina GAIIx and a HiSeq2000 sequencing machine as well as storage and a data analysis pipeline.

Chromatin-IP combined with NGS (ChiP-Seq) to identify binding sites of proteins on DNA or specific histone modifications is one type of application frequently making use of the QGF facility. Another comes from the new field of metagenomics that emerged due to the ability to sequence DNA from diverse biological communities in ecosystems or in infectious diseases. Sequencing of hundreds of cancer genomes is yielding an unprecedented wealth of information about how this deadly disease restructures the genome. It has become evident that NGS technologies will revolutionize many areas of biology and medicine.
Management, Administration & Services

Directorate
Erich Nigg (Director)
Silvia Arber (First Deputy)
Martin Spiess (Second Deputy)
Manuela Holzer (Secretary to the Director)

Administrative Divisions
Marcel Scheiwiller
(Head of Administration)
Roger Jenni (Head of Technical Operations & Logistics)
Evi Sonderegger (Head of Communications)

Communications
Evi Sonderegger (Team Leader)
Katrin Bühler
Werner Indlekofer
Annette Roulier
Heike Sacher

Electronics Workshop
Robert Häring (Team Leader)
Simon Saner

Facility Services / Room Coordination
Daniel Oeschger (Team Leader)
Roland Kirchhofer
Gerhard Rinia
David Schaub
Sabine Hartel

Floor Manager / Assistants
Karen Bergman
Leonardo Faletti
Patric Haenni
Markus Hammerle
Roland Kirchhofer
Marina Kuhn Rüfenacht
Andrea Löschmann
Vaclav Mandak
Rita Manohar
Markus Meier
Beat Schumacher

Finances & HR
Marcel Scheiwiller (Team Leader)
Brigitte Fehrenbach
Manuela Holzer
Gabriele Lichtenhahn

Labware & Media Preparation
Bernadette Bruno
Gina Maria Patricio Salvador Evora
Adela Garzia
Verena Heusner
Isabelle Lanz
Elisabete Leite dos Reis
Maria de Fatima Leite dos Reis
Karin Mauro
Barbara Merz
Cristela Oliveira Cravo
Giuseppina Schillaci
Hafiza Shams
Gerardine Suter-Cremin

Library
Mario Piscazzi

Mechanical Workshop
Raymond Strittmatter (Team Leader)
Roman Eicher
Sven Gfeller
Bernhard Leinweber
Markus Plozza
Michel Schaffhauser
Heiner Sommer
Alain Steiner

Reception
Ursula Ackermann
Corinna Klay

Safety
Karin Hinni

Store & Supply
Alexander Träris (Team Leader)
Luciana Das Neves Pedro
Tristan Jaunlin
Claudia Rocher
Gioacchino Romagnoli

Student Affairs
Susan Kaderli
Angie Klarer

Technical Services
Patrick Hueber (Team Leader)
Pierre Bloch
Karim Malki
Andreas Steidle

University Services for the Biozentrum
Frédéric Schmitt (Team Leader)
Urs Berglas
Charalambos Diseris
Chantal Gammenthaler
Dominique Grosshenny
Zoe Grünig
Bekri Kadrija
Cassie Liss
Laura Martin Weidmann
Piero Masi
Jörg Müller
André Rodriguez
David Überschlag
Nicole Vogelin
Manuela von Arx
Roland Weber

Animal Facility
Thomas Jelk (Team Leader)
Michael Abels
Jsabelle Altherr
Adrian Deller
Daniel Frohlich
Andreas Hefti
Manuela Llamera
Stefan Maisch

IT Support
Thomas Jelk (Team Leader)
Michael Abels
Jsabelle Altherr
Adrian Deller
Daniel Frohlich
Andreas Hefti
Manuela Llamera
Stefan Maisch