Cycle I: Practical and Experimental Skills
Coordinator: Christoph Handschin

I3: Effective scientific communication:
Scientific Writing Course - 21475
(1 day/1CP)

Marie V. St-Pierre (PhD, University of Toronto)

Module description:
The scientific writing course is designed to develop and sharpen the English writing skills of students pursuing degrees in the biomedical sciences. The module consists of two parts: a lecture followed by a workshop. The lecture (part A, 0.5 day) emphasizes the concept that effective scientific writing engages the reader and delivers a clear and concise message. The workshop (part B, 0.5 day) emphasizes the practical skills required to achieve clarity of message. The module covers all aspects of the writing process, including syntax, sentence structure, crafting of paragraphs, preparing sections of a hypothesis-testing manuscript, writing of abstracts, identifying scientific questions and elaborating hypotheses. The students are expected to engage verbally in classroom discussion, to participate in group exercises where texts are criticized and rewritten, and to submit personal written work for peer review.

Learning objectives:
The course aim is to encourage novice writers to hone practical skills. The following is expected of students:

1) to become proficient in recognizing and correcting common writing faults related to word choice and syntax.
2) to become proficient in crafting stylistically pleasing sentences and paragraphs.
3) to demonstrate competence in elaborating scientific aims, research questions and hypotheses.
4) to master the skills of writing abstracts for scientific meetings.
5) to participate in a peer-review process wherein the texts of fellow participants are critiqued.

Course dates: June 2018

I4: Introduction into fluorescence and live cell imaging (IMCF Course) – 34605
(3 days/1CP)

O. Biehlmaier, N. Ehrenfeuchter, W. Heusermann, A. Loynton-Ferrand

Imaging procedures are becoming increasingly important in all fields of biological research. This course will provide an introduction to fluorescence microscopy and live cell imaging and will be composed of lectures and associated hands-on sessions. The lecture series covers basic of light and fluorescence microscopy and gives an overview on imaging processing. Practical work using wide-field and confocal microscopes will be a major part of this course (50%). The participants will set-up experiments on state-of-the-art microscopes and analyze the resulting imaging data. The aim of this course is to provide students with the basic concepts underlying modern microscopy techniques. The validation of the course will consist in a written exam.

Course dates: May 2018
I5: Proteomics course on protein interaction analysis by affinity purification – mass spectrometry (PCF Course) - 34604

(3 days/1CP)

T. Bock

3-day practical course on affinity purification - mass spectrometry (AP-MS) based investigation of protein-protein interactions and posttranslational modifications. This course focuses on the protein interaction analysis of protein phosphatase complexes, which have been linked to the regulation of a number of fundamental biological processes (e.g. cell growth, apoptosis and more) and are involved in cellular transformation during tumorigenesis.

Day 1: Sample preparation
Seminar: Introduction to AP-MS workflows, advantages/disadvantages of different protein affinity tags/enrichment strategies

Hands-on training: Affinity purification of one target protein per student (each student can bring one additional protein of interest for purification via affinity resins), protein digestion over night

Day 2: Mass spectrometric analysis
Seminar: Introduction to mass spectrometry (MS) and its applications in molecular biology

Hands-on training: Solid-phase extraction of peptides, mass spectrometric measurement

Day 3: Data analysis
Seminar: Introduction to MS-data analysis, principles of protein identification

Course dates: March 2018

I6: A Practical Introduction to Biophysical Methods (BF Course) – 34603
(4 days/ 2 CP)

X. Li – Blatter, T. Sharpe

This course will provide a practical and theoretical introduction of a range of biophysical methods that can be used to characterize the stability, size, structure and interactions of biomolecules. Students will gain hands-on experience of eight different techniques in experiments to characterize ligand-binding affinity, thermodynamic stability, secondary structure content, oligomeric state and size of proteins in solution. The course will also show how the techniques can complement one another, and we will discuss which techniques might be suitable for students’ own projects.

At the end of the course, students will be required to write a short proposal (2-4 pages) for the application of at least one of the techniques covered in the course to their own research project. The proposal should demonstrate a theoretical understanding of the technique, consideration of the sample requirements and experimental protocol, and ideas about the potential meaning of the results within the context of their project.

Day 1: Titrations for binding assays, fluorescence intensity, microscale thermophoresis (protein-ligand interactions)

Day 2: Isothermal Titration Calorimetry (protein-ligand interactions), Analytical Ultracentrifugation (oligomeric state)
Day 3:
Circular Dichroism Spectroscopy and Thermal-Shift Assay (structure and stability)

Day 4:
Static and Dynamic Light Scattering, Analytical Ultracentrifugation (size and oligomeric state)

Course dates: dates to be published

I7: Turning ideas into innovations -
The role of intellectual property rights in life sciences – 35143
(2 hrs/week; 2 CP)

H. Müller, H. Zech

The course will provide the basic knowledge of intellectual property with a strong focus on patents, helping PhD students to take the step from scientific/technical ideas to innovations.

Main topics will be:

• The role of innovations in industrialised countries and high-technology sectors
• Protecting inventions and securing commercial success: The role and importance of intellectual property
• Protecting inventions in the life science domains: Options and restrictions
• Patents as a pool of technical and business information:
• similarities to scientific/technical literature and peculiarities
• how to get the information needed
• taking advantage of patents for developing a business

What practical aspects of intellectual property need to be considered in research (including grant proposals), when creating a start-up company and working in an enterprise:

• intellectual property as a key asset in high-tech sectors
• preconditions for investments and cooperations
• collaboration, service, sponsoring, non-disclosure, material transfer, licensing agreements.

The course includes practical exercises in reading and understanding the information in patents. In addition, tutorials are included which enable the participants to use common interfaces to patent databases, and to search for patent information needed.

I8: Python Programming for Structural Biology – 45249
(3 days/1CP)

Timm Maier, Adam Mazur, Michael Podvinec

Day 2: Working with protein structures and sequences: Biopython, OpenStructure and PyMOL

Day 3: Practical session, ideally with application to participants’ research projects

The course will cover the essentials of practical Python programming for structural biology. It is designed for PhD and MSc students who already have basic knowledge
in Python programming and would like to learn how to enhance their skills to solve realistic cases in the field of structural biology. The focus will be put on acquiring practical knowledge about Python modules relevant to structural biology, numerical analysis and visualization. The course days consist of an introductory presentation on the basic concepts and best practices, followed by practical exercises, during which participants can apply the acquired skills.

Course dates: January 2018

I9: Research Integrity
(1 day)

D. Shaw, P. Satalkar

Course topics:

- Data acquisition, management, sharing, ownership, manipulation
- Plagiarism, honest and dishonest mistakes
- Authorship responsibilities
- Advisor-student relationships
- Behaviour in scientific collaborations
- Conflicts of interest

This course is mandatory for PhD Students who have started within Fall Semester 2016.

Course date: 11.10.2017