Navigation mit Access Keys

Main Content

Publications

Christodoulou, G., Vogels, T. P. and Agnes, E. J. (2022) ‘Regimes and mechanisms of transient amplification in abstract and biological neural networks’, PLoS Computational Biology, 18(8), p. e1010365. 10.1371/journal.pcbi.1010365.   edoc | Open Access
Christodoulou, G., Vogels, T. P. and Agnes, E. J. (2021) ‘Regimes and mechanisms of transient amplification in abstract and biological networks’. bioRxiv. 10.1101/2021.04.01.437964.   edoc
Agnes, E. J. and Vogels, T. P. (2021) ‘Interacting synapses stabilise both learning and neuronal dynamics in biological networks’. bioRxiv. 10.1101/2021.04.01.437962.   edoc
Agnes, E. J., Luppi, A. I. and Vogels, T. P. (2020) ‘Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields’, Journal of Neuroscience, 40(50), pp. 9634–9649. 10.1523/JNEUROSCI.0276-20.2020.   edoc
Podlaski, W. F., Agnes, E. J. and Vogels, T. P. (2020) ‘Context-modular memory networks support high-capacity, flexible, and robust associative memories’. bioRxiv. 10.1101/2020.01.08.898528.   edoc
Confavreux, B., Zenke, F., Agnes, E. J., Lillicrap, T. and Vogels, T. P. (2020) ‘A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network’, in Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H. (eds) Advances in Neural Information Processing Systems 33 (NeurIPS 2020). Curran Associates, Inc, pp. 1–11. Available at: https://proceedings.neurips.cc/paper/2020/hash/bdbd5ebfde4934142c8a88e7a3796cd5-Abstract.html.   edoc
Hennequin, G., Agnes, E. J. and Vogels, T. P. (2017) ‘Inhibitory plasticity: Balance, control, and codependence’, Annual Review of Neuroscience, 40, pp. 557–579. 10.1146/annurev-neuro-072116-031005.   edoc
Mizusaki, B. E. P., Agnes, E. J., Erichsen Jr, R. and Brunnet, L. G. (2017) ‘Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity’, Physica. A, Theoretical and statistical physics, 479, pp. 279–286. 10.1016/j.physa.2017.02.035.   edoc
Zenke, F., Agnes, E. J. and Gerstner, W. (2015) ‘Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks’, Nature Communications, 6, p. 6922. 10.1038/ncomms7922.   edoc
Mizusaki, B. E. P., Agnes, E. J., Brunnet, L. G. and Erichsen Jr, R. (2013) ‘Spike timing analysis in neural networks with unsupervised synaptic plasticity’, AIP Conference Proceedings, 1510(1), pp. 213–215. 10.1063/1.4776522.   edoc
Brunnet, L. G., Agnes, E. J., Mizusaki, B. E. P. and Erichsen Jr, R. (2013) ‘Unsupervised learning in neural networks with short range synapses’, AIP Conference Proceedings, 1510(1), pp. 251–254. 10.1063/1.4776532.   edoc
Agnes, E. J., Mizusaki, B. E. P., Erichsen Jr, R. and Brunnet, L. G. (2013) ‘Strategies to associate memories by unsupervised learning in neural networks’, AIP Conference Proceedings, 1510(1), pp. 255–257. 10.1063/1.4776533.   edoc
Agnes, E. J., Erichsen Jr, R. and Brunnet, L. G. (2012) ‘Associative memory in neuronal networks of spiking neurons: architecture and storage analysis’, in Villa, A. E. P., Duch, W., Érdi, P., Masulli, F., and Palm, G. (eds) Artificial Neural Networks and Machine Learning - ICANN 2012. Berlin: Springer (Lecture Notes in Computer Science), pp. 145–152. 10.1007/978-3-642-33269-2_19.   edoc
Agnes, E. J., Erichsen Jr, R. and Brunnet, L. G. (2012) ‘Model architecture for associative memory in a neural network of spiking neurons’, Physica. A, Theoretical and statistical physics, 391(3), pp. 843–848. 10.1016/j.physa.2011.08.036.   edoc
Agnes, E. J., Erichsen Jr, R. and Brunnet, L. G. (2010) ‘Synchronization regimes in a map-based model neural network’, Physica. A, Theoretical and statistical physics, 389(3), pp. 651–658. 10.1016/j.physa.2009.10.012.   edoc