Navigation mit Access Keys

Main Content

How embryonic cells develop into complex organs

Our research group investigates how embryos develop in response to master regulators and variable environmental conditions

Our body consists of 30 trillion cells that are organized into organs such as the liver, heart and kidneys. These specialized cells are generated in the embryo by a combination of molecular processes, some of which are hard-wired in the embryo and others that respond to environmental conditions.

Master regulators establish cell fates 
Early embryonic cells are pluripotent, meaning they can differentiate into any cell type. With time, these cells become restricted in their developmental potential. So-called ‘master regulators’ play an important role in controlling cell identity. The Mango lab uses a simple animal, the nematode Caenorhabditis elegans, to study how master regulators dictate the identity of cells. We use molecular genetics, imaging and genomics to identify the hard-wired pathways that induce master regulators and set cell differentiation in motion.

The role of the environment on embryo development 
In addition to hard-wired processes, embryos respond to the environment experienced by their parents or grandparents. When forebearers are exposed to pathogens, starvation, or toxins, their offspring are altered so they are ready to respond to these environmental challenges. The mechanism that allows signaling between generations remains a mystery.

Currently, Susan Mango is Professor of Molecular and Cellular Biology at Harvard University in Cambridge, USA. She will begin her new position at the Biozentrum in January 2019.

Main Content